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Despite significant progress in recent years, the important problem of static race detection remains open.
Previous techniques took a general approach and looked for races by analyzing the effects induced by low-

level concurrency constructs (e.g., java.lang.Thread). But constructs and libraries for expressing parallelism

at a higher level (e.g., fork-join, futures, parallel loops) are becoming available in all major programming
languages. We claim that specializing an analysis to take advantage of the extra semantic information

provided by the use of these constructs and libraries improves precision and scalability.

We present IteRace, a set of techniques that are specialized to use the intrinsic thread, safety, and
data-flow structure of collections and of the new loop-parallelism mechanism introduced in Java 8. Our

evaluation shows that IteRace is fast and precise enough to be practical. It scales to programs of hundreds

of thousands of lines of code and it reports very few race warnings, thus avoiding a common pitfall of static
analyses. In five out of the seven case studies IteRace reported no false warnings. Also, it revealed six bugs

in real-world applications. We reported four of them, one had already been fixed, and three were new and
the developers confirmed and fixed them.

Furthermore, we evaluate the effect of each specialization technique on the running time and precision

of the analysis. For each application, we run the analysis under 32 different configurations. This allows us
to analyze each technique’s effect both alone and in all possible combinations with other techniques.
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1. INTRODUCTION

The recent prevalence of multi-core processors has increased the use of shared-memory
parallel programming [Torres et al. 2011]. Most major programming languages have parallel
constructs or libraries that provide extensive support for loop parallelism, e.g., Parallel.For
in .NET TPL [TPL 2015], .parallelStream() in Java 8 collections [lam 2015], parallel for in
C++ TBB [TBB 2015]. Recent empirical studies [Okur and Dig 2012; Torres et al. 2011]
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show that developers have started to adopt high-level concurrency structures, despite their
recent introduction.

Still, programs with parallel loops are subject to the plague of shared-memory concurrent
programming: data races. A data race can occur when one thread executing a loop iteration
writes a memory location and another thread executing another loop iteration accesses the
same memory location with no ordering constraint between the two accesses.

The high-level nature of parallel loops does not protect the developer from introducing
data races. At most, the high-level structures give the developer a clearer view of the
threads that execute concurrently. Still, we have no reason to believe that code using high-
level concurrency structures, such as parallel loops, is less susceptible to data races than
code using threads directly. As the high-level concurrency structures are easier to use, more
developers (including inexperienced ones) may be encouraged to use concurrency. We know
that developers often misuse the new high-level concurrency APIs [Okur and Dig 2012;
Lin and Dig 2013]. Data races, which are subtler mistakes, should be at least as prevalent,
especially in Java, a language where mutability is encouraged.

Data races are hard to find due to non-deterministic thread scheduling. This has led to a
large body of research on race detection. Static race detection techniques [Henzinger et al.
2004; Abadi et al. 2006; Naik et al. 2006; Voung et al. 2007; Jhala and Majumdar 2007;
Naik and Aiken 2007; Halpert et al. 2007; Bodden and Havelund 2008; Kahlon et al. 2009;
Naik et al. 2010; Liang et al. 2010; Pratikakis et al. 2011] use an underlying static model of
the program’s real execution. In theory, this allows a single analysis pass to find all the races
that could occur in all possible program executions. Well-implemented, conservative static
race detectors do not miss races but are faced with the opposite problem: despite continuous
improvements, they still report too many false warnings. For example, we applied JChord
[Naik et al. 2006], a state-of-the-art static race detector, on compute-intensive loops from
seven Java applications. In many cases, JChord reported thousands of racing accesses per
analyzed loop. This may be one of the reasons why static race detectors have not been
embraced in practice. Indeed, most of the recent work on data-race detection has focused
on dynamic detectors [Schonberg 1989; Dinning and Schonberg 1990; Choi et al. 1991;
Mellor-Crummey 1991; Adve et al. 1991; Savage et al. 1997; Ronsse and De Bosschere 1999;
Christiaens and De Bosschere 2001; von Praun and Gross 2001; O’Callahan and Choi 2003;
Nishiyama 2004; Marino et al. 2009; Flanagan and Freund 2009; Naik et al. 2010; Liang
et al. 2010; Sheng et al. 2011], which typically have much fewer false warnings, but have
high overhead and miss races on program paths that are not executed.

Can static race detection for Java applications be practical? Previous approaches em-
braced generality : they tried to work equally well for any kind of parallel construct by
analyzing thread-level concurrency, did not differentiate between application and library
code, and did not use the documented behavior of libraries. This came at the expense of
practicality : they were either not scalable or reported a high number of false warnings. We
hypothesize that a specialized analysis can significantly improve precision while maintaing
scalability. In this paper, we validate this hypothesis for the case of Java parallel loops.

Our goals are to prune false warnings and reduce as much as possible the total number
of warnings the programmer has to inspect, while not sacrificing safety, i.e., not removing
any true race. We present three specialization techniques that contribute to these goals:

(1) 2-Threads – make the analysis aware of the threading and data-flow structure of loop-
parallel operations.

(2) Filtering – filter the race warnings based on a thread-safety model of library classes.
(3) Bubble-up – report races in application code, not in libraries.

We implemented these techniques in a tool called IteRace. The current implementation
only finds data races between the threads of parallel loops, but it could be extended to or
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Fig. 1: Modeling a parallel loop. Circles are threads, squares heap regions. Double line
denotes abstraction.

integrated with a general race detector. We empirically validated how well the proposed
techniques work individually, and in various combinations.

1.1. 2-Threads

A parallel loop is an SPMD-style (Single Program, Multiple Data) computation. Its iter-
ations are identical tasks processing different input elements. The tasks are executed by
a pool of threads. Without loss of generality, we can consider that each task/iteration is
computed by a different thread. The main thread forks multiple identical threads at the
beginning of the loop and waits for these threads to join at the end of the loop (Fig.1.a).
Each of the threads/iterations can access a part of the heap. In the figure, hs is the set of
objects shared between parallel threads. hi is the set of objects specific to thread ti, i.e.,
input or new objects only accessed by thread ti.

A general race detector models the identical forked threads by only one abstract thread
[Naik et al. 2006; Pratikakis et al. 2011] (see Fig.1.b). This makes the thread-specific object
sets h1...hn indistinguishable from each other, as they are modeled by a unique set ha. Then,
escape analysis or other techniques are used to refine the results and reduce the number of
false warnings.

In contrast, our specialized technique models the identical forked threads by two distinct
abstract threads, tα and tβ (Fig. 1.c). This closely matches the definition of a data race as
it disambiguates the two threads involved in the definition. As the objects specific to each
of the two threads are modeled by the separate sets hα and hβ , the number of abstract
objects that are shared is significantly reduced. Our modeling subsumes the effect of thread
escape analysis but is more precise. Like with thread-escape, an abstract object that does
not escape a thread is considered safe. However, when an object does escape, our analysis
does not implicitly consider it unsafe. IteRace only reports a race warning when an object
reaches the other abstract thread and there is a concurrent access.

1.2. Bubble-up

All Java programs of real value are built on top of libraries - even the “Hello World”
program uses several JDK classes. General race detectors do not keep track of whether the
race appears in library code or in application code. However, reporting a race in library
code has little practical value for application developers as such a race is rarely due to a
buggy library - it is likely due to concurrent misuse of the library.
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IteRace bubbles-up the race warnings that occur in library code by tracing back the race
warnings to the application level and presenting a summarized result to the developer. The
application-level race warnings can be seen as misuse warnings on shared, thread-unsafe
library objects.

1.3. Filtering

To improve performance, many library classes employ advanced synchronization techniques
(e.g., memory fences, spin-locks, compare-and-swap, immutability, complex locking proto-
cols). These classes pose challenges for any static race detection and their analysis is mostly
limited to model checking and verification approaches. As our analysis is aimed at applica-
tion code, not library classes, we assume that libraries are correctly implemented. Thus, we
use a lightweight model of their documented behavior to determine correctness. In addition,
following Michael Hind’s advice on the importance of client-specific pointer analysis [Hind
2001], we use this model to specialize the context sensitivity to increase precision and lower
runtime.

Contributions

This paper extends the work presented at ISSTA in 2013 [Radoi and Dig 2013] (i) by provid-
ing a more formal, precise, and in-depth description of the techniques, (ii) by relaxing the
IFDS lockset algorithm to allow filtering of more races, and (iii) by an algorithmic improve-
ment that resulted in significantly better precision. In our case studies, the improvements
reduce the number of race warnings by 27% on average. In one case, the number of race
warnings shrank from 1735 to 2.

This paper presents the following contributions:

— Race detection approach. We propose three techniques aimed at making static race
detection for loop-parallel code practical. Our approach (i) specializes in lambda-style
parallel loops [lam 2015], (ii) traces, summarizes, and reports the race warnings in ap-
plication code, and (iii) is aware of and uses known thread-safety properties of library
classes.

— Tool. We implemented these techniques in a tool, IteRace, that analyzes Java pro-
grams. We released it as open-source: http://github.com/cos/IteRace.

— Evaluation. We evaluated our approach by using IteRace to analyze seven open-
source projects. For context, we also analyzed the same projects with a state-of-the-art,
but general, static race detection tool, JChord [Naik et al. 2006]. The results show that
our specialized approach is sufficiently fast and precise to be practical. It runs in at most
a few minutes and reports very few warnings for many of the case studies. In five of the
seven case studies IteRace reports only true races, i.e., it does not report any false race
warning.
We reported four of the bugs found by IteRace to the projects’ developers. One had
already been known and fixed. The other three were new, and they were confirmed and
fixed by the developers.
Finally, we designed and carried out a set of experiments to measure the effect of each
specialization technique, both alone and in combination with other techniques.

2. MOTIVATING EXAMPLE

To illustrate our analysis, we use a simple N-body simulation implementation, shown par-
tially in Fig. 2; for now, only consider the code, not the extra graphical aid. An N-body
simulation computes how a system of particles evolves when subjected to gravitational
forces. The parallel implementation uses the loop parallelism library enhancements intro-
duced in Java 8 [JDK 2015]. In Java 8, clients can call the parallel() method on any Collection
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class NBody {
    class Particle {
       double x, y, vX, vY; // position, velocity
       double fX, fY, m;    // force, mass
    }
    Particle centerOfMass = new Particle();
    protected Object lock;
    ArrayList<Particle> history = new ArrayList<Particle>();

    void compute() {
Set<Particle> particles = (new Range(0,1000)).map(i -> {

1
2
3
4
5
6
7
8
9

10
11

  Particle p = new Particle();
  readParticle(p);
  return p;

12
13
14

  Particle p = new Particle();
  readParticle(p);
  return p;

12
13
14

}).into(new HashSet());
for (int i = 0; i < noSteps; i++) {

            updateForce();
            particles.parallel().forEach(p -> {

15
16
17
18

  p.vX += p.fX / p.m * dT;
  p.vY += p.fY / p.m * dT;
  p.x += p.vX * dT;
  p.y += p.vY * dT;

  Particle oldCOM = this.centerOfMass;
  this.centerOfMass = new Particle();

  synchronized (this.lock) {
  centerOfMass.m = oldCOM.m + p.m;
  }
  centerOfMass.x = (oldCOM.x * ...
  centerOfMass.y = (oldCOM.y * ...
    
  System.out.println(centerOfMass);
  history.add(centerOfMass);
}); ...

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

  p.vX += p.fX / p.m * dT;
  p.vY += p.fY / p.m * dT;
  p.x += p.vX * dT;
  p.y += p.vY * dT;

  Particle oldCOM = this.centerOfMass;
  this.centerOfMass = new Particle();

  synchronized (this.lock) {
  centerOfMass.m = oldCOM.m + p.m;
  }
  centerOfMass.x = (oldCOM.x * ...
  centerOfMass.y = (oldCOM.y * ...

  System.out.println(centerOfMass);
  history.add(centerOfMass);
}); ...

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

tm
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tm
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×

Fig. 2: Visual representation of how our tool, IteRace, analyses a simple N-body
simulation implementation. Each block of code is labeled with the abstract thread that
executes it, e.g., t′α. The arrows show points-to relations from variables to allocation sites,
e.g., variable p at line 21 in thread t′′α may point to the abstract object instantiated on
line 12 in thread t′α. Only relevant points-to relations are shown. The dashed crossed arrow
represents an abstract points-to relation that would not appear in any real execution, so it
is correctly discarded in our model.

to get a “parallel view” of it. They can then execute loop-parallel operations (e.g. parallel
map) by passing lambda expressions to this view.

In this example, a HashSet of particles is created by the lambda expression at lines 11-15.
Then, the simulation proceeds iteratively in time steps (line 16), at each step the particles
being moved according to their mass and current positions and velocities. An N-body simu-
lation step is typically comprised of two stages. The first stage updates the forces according
to the mass and current position of all particles. This stage is computed by the method
updateForce, which we choose not to detail here as it is verbose and does not add value to
the presentation. In the second stage, the parallel operator defined at lines 19-33 updates
each particle’s velocity (lines 19-20) and position (lines 21-22).
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Loop: simulation.NBody.compute(NBody.java:18)

java.util.ArrayList: simulation.NBody.<init>(NBody.java:8)
application level
(a) simulation.NBody$2.op(NBody.java:34)
(b) simulation.NBody$2.op(NBody.java:34)

simulation.Particle: simulation.NBody$2.op(NBody.java:25)
.x
(a) simulation.NBody$2.op(NBody.java:30)
(b) simulation.NBody$2.op(NBody.java:30) [2x]

.y
(a) simulation.NBody$2.op(NBody.java:31)
(b) simulation.NBody$2.op(NBody.java:31) [2x]

simulation.NBody: simulation.NBody.main(NBody.java:40)
.centerOfMass
(a) simulation.NBody$2.op(NBody.java:25)
(b) simulation.NBody$2.op(NBody.java:24)

simulation.NBody$2.op(NBody.java:25)
simulation.NBody$2.op(NBody.java:28)
simulation.NBody$2.op(NBody.java:30)
simulation.NBody$2.op(NBody.java:31)
simulation.NBody$2.op(NBody.java:33)
simulation.NBody$2.op(NBody.java:34)

Fig. 3: IteRace’s report for the example in Fig. 2

For the purpose of showing how different races are handled by our analysis, we have also
included a computation of the centerOfMass of all particles (lines 24-31). Also, lines 33-34
print and then log the movement of the center of mass in the ArrayList history.

The center of mass is stored in an instance field of NBody (line 6). The computation
proceeds as follows. Line 24 stores the current value of the centerOfMass field in a local
variable oldCOM. Then, the centerOfMass field is updated to a new Particle object (line
25) which is populated with values based on the oldCOM and the current particle, p (lines
27-31). As this computation is part of the parallel operator, there are multiple threads
executing this code concurrently. The NBody object is shared between these threads, so
there are multiple races that can occur on the centerOfMass field and Particle object referred
by it. The centerOfMass field write on line 25 can race with another thread executing the
instruction on line 25 or any of the read field instructions at lines 24, 28, 30, or 31. Also,
lines 28, 30 and 31 write and read fields of the Particle referenced by centerOfMass. This is
the object initialized at line 6 but it is not thread-local, so multiple threads could access
the same Particle. The accesses to fields x and y (lines 30 and 31) are not synchronized so
they are racing. The accesses at line 28 are protected by a unique lock shared between all
threads, so they are safe.

Next, line 33 prints the current centerOfMass. Although this action accesses shared re-
sources, i.e., the standard output stream, it is safe due to synchronization within the
PrintStream class.

Finally, line 34 logs the current center of mass into an ArrayList pointed to by the history
field of the NBody object. As the history collection is shared and the ArrayList class is not
thread-safe, there will be races on the inner state of ArrayList.

Fig. 3 shows IteRace’s output for our example program. The first line is the parallel
loop which contains the races. Our tool then groups the reports by the allocation site (i.e.,
object instantiation site) of the object involved in the race. We have three groups of races:
on the history ArrayList object instantiated at line 8, on the centerOfMass Particle object
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instantiated at line 25, and on NBody object itself instantiated in the main method of the
program (not shown). Each group of races is further grouped by the affected field, and all
application-level races are bundled together.

We first consider the group of races on the history ArrayList, which describes the “appli-
cation level” race at line 34. IteRace reports this race as the concurrent execution of the
instruction identified by the next line, labeled “(a)”, and the instruction identified by the
following line, labeled “(b)”.

The next group of races, on the centerOfMass object, is further divided into two subgroups
based on the affected field. The “[2x]” label says that there are two accesses on that line
that are involved in the race. For the race on the x field at line 30, we have a write access to
the field, labeled “(a)”, and two read accesses under the “b” label. Thus, the entire group
has four races, two on field x and two on field y.

The last group of races, on the centerOfMass field of the NBody object, describes the
possible concurrent execution of the write access at line 25, labeled “(a)”, and several
read/write accesses executed by a different thread, listed under the “(b)” label.

The next section explains how IteRace correctly identifies all of the 12 races described
above, and how it filters out false positives. The Filtering phase eliminates the races on the
standard output while the Bubble-up transforms the race warnings in the ArrayList to a
single warning on line 34. Finally, Synchronized determines that a race cannot occur at line
28 because the accesses are protected by the shared lock. Furthermore, the accesses on fields
vX, vY, x, and y at lines 19-22 are not races and IteRace does not report them as such. In
this case, an analysis lacking 2-Threads and relying on escape analysis would report false
warnings.

3. RACE DETECTION

We now explain how IteRace represents programs, how it detects races, and how it avoids
false warnings.

Figure 4 presents a high level overview of IteRace. WALA [wal 2015] provides the un-
derlying Andersen-style static pointer analysis. The call graph is computed on-the-fly along
with the heap model, based on a specialized context sensitivity. Each of our techniques
specializes the context sensitivity, as detailed in sections 3.1, 3.2, and 3.3. The analysis
is flow-insensitive, with the exception of the limited amount of flow sensitivity provided
by static single assignment. Objects are abstracted by allocation sites and fields are dis-
tinguished. Method calls have a bounded context sensitivity that is specialized by each
technique. On completion, the pointer analysis produces a static call graph representing the
execution, a control-flow graph for each method, and a heap graph.

Next, IteRace computes the set of potential races (pairs of accesses that would race
if not synchronized) by traversing the program representation and matching instructions
using alias information from the heap graph (Sec. 3.1).

Also, for each statement in the program, IteRace computes the lock set that protects
it. This is achieved by an IFDS analysis [Reps et al. 1995].

Then, the Filtering phase (Sec. 3.2) eliminates races based on a priori thread-safety
information for classes.

Accesses protected by the same lock are race-free. The Deep-Synchronized phase (Sec.
3.5) filters out the potential races on such accesses, yielding the set of actual races.

Then, IteRace “bubbles up” the races that occur in library code and reports them in
application code, on the library-method calls that led to them (Sec. 3.3).

Finally, Synchronized , a stage similar to Deep-Synchronized , further prunes the bubbled-
up race warnings.
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CG - CFGs Heap Graph

potential races

data-flow analyses

locksets

Deep-Synchronized

bubble out of JDK

reported races

traverse and match

pointer analysis

CG - CFGs

Filtering

Synchronized

2-Threads, Bubble-up, Filtering

Fig. 4: Analysis overview. Ovals represent different sub-analyses. Rectangles represent
intermediate and final data structures. The bottom half-oval represents the specialized con-
text sensitivity mechanism.

Domains:

(method, instruction) m ∈M, i ∈ I
(object) o ∈ O = N× I

(class object) oS ∈ OS ⊂ O
(parallel collection) oc ∈ Oc ⊂ O

(loop) l ∈ L ⊂ Oc × N× I
(thread) t ∈ T = (L× {α, β}) ∪ {tm}

(the main thread) tm ∈ T
(an α thread; similar for β) tα ∈ Tα = L× {α} ⊂ T

(call graph node) n ∈ N = X×M
(boolean flag) b ∈ B

(CG node context) x ∈ X = ({tm} × 2I) ∪ ((Tα ∪ Tβ)× B× [B]×O)

Notation:
If γ = 〈γ1, . . . γk, . . .〉 ∈ Γ1 × · · · × Γk × . . .

then πΓk
(γ) = γk is the projection of γ on the Γk domain

Fig. 5: Program model
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context : N×M× I× [O]→ X
context(〈xc,mc〉,m, i, Op) =

=


〈tm, (Op ∩Oc) ∪ π2(xc)〉 if πT(xc) = tm and outside loop

〈t, false, [], ε〉 if πT(xc) = tm and entering t ∈ L× {α, β}
〈t, xtts ∨ x′tts, x′s, o′r〉 if xc = 〈t, xtts, xs, or〉

where

x′tts = true if transitively-thread-safe(m)
x′s = [to = tm ∨ π{α,β}(to) 6= t | ok ∈ Op and to = πT(πX(πN(ok)))]
o′r = Op(1), if the receiver object Op(1) is a container, e.g., a collection

〈xc,mc〉 – caller CG node
m – callee method
i – call site instruction

Op – set of actual parameters, including the receiver object
Oc – set of parallel collections in the program

Fig. 6: Context sensitivity

3.1. 2-Threads program model

Figure 5 presents the way IteRace models the program. M, I, O are domains that represent
methods, instructions, and objects. Objects are modeled as allocation sites in call graph
nodes. For uniformity, classes are represented as abstract objects, OS , and static fields as
fields of these objects.

The main thread of the program is modeled by an abstract thread tm ∈ T (lines 1-8
and 16-17 in our example). As outlined in Fig. 1, the concrete threads executing each loop
l ∈ L are modeled by two abstract threads, tα and tβ . In our example (Fig. 2), 〈t′α, t′β〉 and

〈t′′α, t′′β〉 model the threads executing the parallel loops at line 11 and 18, respectively. We
will further use the notation t : x to refer the instructions at line number x as executed
in the context of abstract thread t; e.g., t′α : 12 refers the instruction at line number 12
executed by t′α.

Each call graph node n ∈ N is named by the called method m ∈M and a context x ∈ X.
The context is determined using the context function detailed in Fig. 6. The abstract thread
t ∈ T executing the method is part of the context, along with other information explained
in the next subsections.

Figure 6 shows how IteRace determines the call-context sensitivity. Let 〈xc,mc〉 (context
and method) be a call graph node. It contains an instruction i which calls method m
with the list of arguments Op. The context for the call graph node created by this call is
given by context(〈xc,mc〉,m, i, Op). IteRace computes the context in three different ways
depending on the executing thread of the caller and callee. In all cases, the context contains
the executing thread.

In the first case the main thread executes 〈xc,mc〉, and m is not a loop operation (i.e., the
computation is not entering a loop). In this case, IteRace refines the context with the set
of all arguments on the call graph which are parallel collections (Oc). The set is the union of
all current arguments which are parallel collections (Op∩Oc) with the set of such arguments
from the calling call graph node xc (xc is in this case a pair, with its second element being
the parallel collection set, so we do a set union with its projection on the second element).
The context sensitivity on the parallel collection abstract objects avoids the conflation of
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c.forEach(op)
op(eα) [tα]

op(eβ) [tβ ]

c.map(op)

eα = op(eα) [tα]

eβ = op(eβ) [tβ ]

return c [tm]

c.reduce(base, op)

x1 = op(eα,base) [tα]

x2 = op(x1, eβ) [tβ ]

return x2 [tm]

Fig. 7: Model of collection operations. The abstract thread executing each operation is
bracketed to its right.

abstract parallel loops iterating over distinct parallel collections. The conflation led to an
inflation in the number of false warnings in one of our case studies.

In the second case the computation is just entering a loop operation executed by thread
t, which, in our model, is either the α or the β thread. This is the point where the context
structure is transformed from the simple thread-and-collection pair used outside loop to the
quad used inside the loop. The quad is initialized with the current thread and empty values
(〈t, false, [], ε〉).

The third case represents a call between two methods executed within the loop operation.
The context is a quad containing:

— the executing thread (tα or tβ).
— a boolean flag, xtts, marking whether the current node is transitively-thread-safe (ex-

plained in Section 3.2).
— xs, a list of boolean flags corresponding to the sharing nature of the arguments (explained

at the end of Section 3.2).
— or, a reference to the receiving object if it is a container (e.g., a collection). This adds

a level of container context sensitivity (see [wal 2015]), which helps with not conflating
abstract objects which pass through collections.

The analysis matches loops operating on the same collection (〈t′α, t′β〉 and 〈t′′α, t′′β〉 in our

example) using the abstract object characterizing both loops (see loop in Fig.5). When the
abstract object represents multiple concrete objects that are not all processed by the loop,
the analysis might introduce spurious warnings, although it would still be safe. The context
sensitivity on the parallel collection described for the first case above helps alleviate this
effect by precisely tracking the collections of interest through the program.

The analysis maintains a special model for each collection of interest. The elements of
a collection are modeled by two abstract fields, eα and eβ . Fig. 7 shows how each of the
abstract threads, tα and tβ , processes one of the abstract fields eα and eβ , respectively. This
model allows our technique to distinguish between elements processed by different threads.
For example, in the case of the forEach operation, different elements of the collection, eα
and eβ , are processed by different threads, tα and tβ , respectively. The model is capable
of distinguishing that processing eα only updates eα, not both eα and eβ , and vice-versa.
While our implementation does not cover all the new Java 8 collection operations [lam
2015], it can be easily adapted to do so once the specification stabilizes.

The above modeling is used for both the parallel and the sequential loop operations over
the collection of interest. This allows IteRace to understand the relationships between
the elements of the collection as it is processed by different loops. In Figure 2, both the
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collection initialization at lines 11-15 and the processing at lines 18-35 are modeled. Thus,
IteRace sees that the element p in t′′α is the same as p in t′α but different from p from t′β .

Definition 3.1. A potential race is a pair of accesses (〈nα, iα〉, 〈nβ , iβ〉) to the same field
of the same object, such that one is a write access executed by a tα (i.e., πT(πX(nα)) = tα)
and the other is either a read or a write executed by tβ (i.e., πT(πX(nβ)) = tβ), with and
tα and tβ modeling the same loop (i.e., πL(tα) = πL(tβ)).

In our example, there are several potential races on the centerOfMass field of the NBody
object. Instruction t′′α : 25 writes the field centerOfMass while instructions t′′β : 24 and

t′′β : 25 read and respectively write the same field of the same object. Therefore, according

to the definition above, the pairs of accesses 〈t′′α : 25, t′′β : 24〉 and 〈t′′α : 25, t′′β : 25〉, on the
centerOfMass field of the NBody object are potentially racing. Accesses at lines 28, 30, and
31 in thread t′′β are also racing with instruction t′′α : 25 because they read centerOfMass.

The more interesting cases are the potential races on fields of the Particle references by
centerOfMass. We will look at the write access at t′′α : 31 and the read/write accesses at
t′′β : 31. centerOfMass at t′′α : 31 may point to the objects instantiated at either of tm : 6 (the

pointer analysis is flow-insensitive), t′′β : 25 or t′′α : 25. centerOfMass and oldCOM at t′′β : 31
may point to the same three objects. For the latter of the objects, i.e., the one instantiated
at t′′α : 25, there are two potential races on its y field, one for the write-write accesses (both
writes on centerOfMass), and one for the write-read accesses (write on centerOfMass, read
on oldCOM). Similarly, there are two potential races for each of the objects instantiated at
tm : 6 and t′′β : 25. It is not possible for a race to occur on the object instantiated at tm : 6
but IteRace is flow insensitive so it does not take into consideration that the field update
at line 25 happens before the potential race on line 31. Still, the resulting false warnings are
not particularly distracting to the programmer as they are usually accompanied by warnings
of real races on the same variable, as in our example. Also, section 6 shows how the way we
report races makes such cases less of a nuisance.

We now look at accesses that are not potential races because of our particular representa-
tion of collection operations, i.e., two abstract threads for each operation with an underlying
modeling of the collection elements. Let us consider the pair of non-racing write accesses to
p.x 〈t′′α : 21, t′′β : 21〉. They are not racing as each refers to a different unique element of the
collection.

In order to determine if they are racing, an analysis needs to determine whether the p
variables from each of the threads may alias. If the parallel loop iteration would be modeled
by only one abstract thread, there would be only one abstract representation for the p
variable so it would obviously may-alias. Then, thread escape analysis could be employed
to cut down the number of accesses that can be involved in a race. In this case, escape
analysis would not solve the problem as the object referenced by the variable is escaping
through particles. Then, other more expensive analyses could be further employed to refine
the results, for example [Naik and Aiken 2007].

In contrast, our approach is simpler yet very effective, making thread-escape analysis
unnecessary. As IteRace models each parallel loop by two threads, it does not need to
consider races that might occur between instructions of the same abstract thread. Also, as
IteRace models the collection to distinguish between the elements processed by each of
the two abstract threads, it achieves collection-element sensitivity. For example, the object
initialized at instruction t′α : 12 is identified as the same as the object accessed at t′′α : 21,
but different from the object initialized at t′β : 12 (crossed arrow). Similarly, the object

initialized at instruction t′β : 12 is the same as the object accessed at t′′β : 21 and different

from the one at t′α : 12. Hence, p at t′′α : 21 and p at t′′β : 21 may not alias, therefore

〈t′′α : 21, t′′β : 21〉 cannot race.
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Additionally, all objects are labeled with their instantiation thread. IteRace uses this
information to alleviate the effect of the pointer analysis not being meet-over-all-valid -
paths [Sharir and Pnueli 1981]. The code listing below shows a very simple example of
how a shared object can “piggyback” on a non-shared object’s abstract path through the
program and then introduce a false race. Without any extra context sensitivity, both calls to
returnMyself are represented by the same call graph node. Thus, particle points to both the
objects referenced by sharedParticle and the new, locally initialized Particle. As the pointer
analysis does not filter invalid paths, p will also point to both the new object, as it should,
and the shared object. Now, any write access, like the one to the x field below, will introduce
false warnings.

public void returnMyself(Particle particle) {
return particle;

} ...
returnMyself(sharedParticle);
Particle p = returnMyself(new Particle());
p.x = 7;

To alleviate this effect, our tool makes calls within parallel iterations context sensitive on
the sharing nature of their arguments. Each call graph node executed by a loop operator
has in its context (as part of x ∈ X – see Fig. 5) a list of boolean flags Xs with Xs(k) = true
meaning that the k argument has not been instantiated in the current iteration (see x′s in
Fig. 6). For the above example, Xs(1) is true for the call on sharedParticle but false for the
call on the new Particle. Thus, two distinct call graph nodes are created for returnMyself. In
effect, p only points to the new object, and no false races are introduced.

3.2. Filtering using a thread-safety model

IteRace uses a simple a priori (mostly provided by IteRace and completed by the user
when needed – see Section 4.3) thread-safety model of the classes to drastically reduce the
number of warnings introduced by the intricate thread-safety mechanisms in libraries. For
this purpose, it adjusts the context sensitivity and adds one warning-filtering phase.

Filtering uses the following a priori information about methods. A method of a class:

— is thread-safe if the instructions of this method cannot race in any concrete invocation.
— is transitively-thread-safe if it is thread-safe and any other invocation reachable from

its invocation cannot be involved in races. This category of methods includes, but is
not limited to, methods of immutable classes. All transitively-thread-safe methods are
thread-safe (by definition). The converse is not true, as explained at the end of this
subsection.

— instantiates-only-safe-objects if any object instantiated inside the method, but not
necessarily in other methods called by it, is thread-safe. This property is mostly useful
for anonymous classes as they cannot be modeled with thread-safe because there is no
class name to hook to.

— circulates-unsafe-objects if the method may either return or receive a possibly non-
thread-safe object as a parameter.

Using this information, the context of a callee is generated from the context of the caller
by adding a transitively-thread-safe sticky flag when the callee is transitively-thread-safe, as
shown in Fig.6. The flag is sticky in the sense that they will be propagated downstream
unless explicitly removed.

The Filtering stage uses the above model and the generated flags to filter out accesses
that cannot be involved in races. An access in the abstract invocation na of method ma on
object o instantiated in a method mo, cannot be involved in a race if any of the following
conditions is met:
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— thread-safe(ma)
— instantiates-only-safe-objects(mo)
— transitively-thread-safe(na)

It is possible to have methods that are thread-safe but not transitively-thread-safe. Let
us go back to the example in Fig.2. Line 34 contains a call to PrintStream on the method
println(Object) listed below:

public void println(Object x) {
String s = String.valueOf(x);
synchronized (this) {

print(s);
newLine();

}
}

This method is thread-safe as a race cannot occur within it but it is not considered
transitively-thread-safe because of the call to String.valueOf. This method verifies whether the
passed object is a String and calls toString on it otherwise. The problem is that we know noth-
ing about the thread-safety of toString on arbitrary objects. Even protecting String.valueOf(x)
within a synchronized section would not help, since it could still race with another access
holding a different or no lock. The method also calls print(String) and newLine(). These
methods are transitively-thread-safe as they are also synchronized internally and do not
operate on any object supplied from outside.

3.3. Bubble-up to application level

Next, IteRace bubbles up the races that occurred in libraries to application level. The
intuition is that the application programmer does not care which library inner object the
accesses occurred on. She only cares which accesses to said application-level object generate
races. For line 34 in our example (Fig. 2), the programmer doesn’t care that the races
occurred on fields elementData and size inside the ArrayList object. She only cares about the
pair of accesses on history. The programmer can tell IteRace which classes to consider as
library classes, yielding reports at various depth levels.

Reporting a race means reporting a racing pair of accesses. IteRace reports each of the
accesses occurring in library code as a set of method invocations in application code that
lead to the in-library access.
〈na, ia〉 is an application-level access leading to 〈n, i〉 iff the method associated with call

graph node na is not is-library, and there exists a path from na to n for which all intermediate
nodes except na are through library code. The set of application-level accesses leading to a
racing access is computed by traversing the call graph backwards, from the race to the first
call graph node outside of library code.

For each race 〈〈nα, iα〉, 〈nβ , iβ〉〉 in library code, IteRace creates the set of application-
level races by matching the application-level accesses leading to 〈nα, iα〉 with the
application-level accesses leading to 〈nβ , iβ〉. The accesses are matched based on their
application-level receiver objects.
IteRace also adds a layer of object sensitivity [Milanova et al. 2005] on calls to methods

of objects known to be containers of other objects (e.g., JDK collections). This improves the
precision of the Bubble-up technique as it induces a better separation between application
and libraries.

Interactive iterative refinement. In addition to not reporting race warnings in library
code, the Bubble-up technique is also used for narrowing down the cause of a race. The
programmer first aggressively marks application classes as library code in order to make
the analysis report warnings much closer to the loop body. This drastically reduces the
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number of warnings but also hides the reason the analysis considers some pairs of accesses
as leading to races. Then, the programmer gradually removes the is-library markings until
the source for the race reveals itself. After each analysis run, for each race or group of
related races, the programmer asks herself the question: “Why are these accesses racing?”.
If she cannot find an answer by inspecting the code, she removes the library marking for the
offending accesses, and reruns the analysis. She repeats this process until all the reported
race warnings are fully understood.

3.4. Abstract locksets

In order to determine if a program is correctly synchronized, one needs to determine which
locks protect each instruction that may run in parallel with other instructions. In the case
of a static analysis such as ours, a conservative set of locks needs to be determined.

In Java, a lock can be either an instance of a class or the class itself. We represent instance
locks by the SSA variable that was dereferenced when acquiring the lock in a particular call
graph node (i.e., by a pair 〈nk, vk〉 ∈ N×V), and class locks by the corresponding abstract
class object (an oS ∈ OS).

Let k be an abstract lock. k protects the statement 〈n, i〉 if, in all possible executions, lock
k is held by thread πT(n) at 〈n, i〉. We compute the protects property for a particular thread
by encoding it as an interprocedural, finite, distributive, subset (IFDS) problem [Reps et al.
1995].

For thread t (tα or tβ in our case), protectst(〈n, i〉) gives the set of locks protecting
statement 〈n, i〉. It is computed as the set difference allLocks(t) \ notProtects(〈n, i〉), where
allLocks(t) is the set of all abstract locks acquired by thread t and notProtects(〈n, i〉) is the
solution at node 〈n, i〉 for the IFDS problem IPt = (G∗, L, F,M,∪).
G∗ is the supergraph of the program, i.e., the graph obtained by replacing each node n of

the call graph with its corresponding control-flow graph (i.e. the CFG of πM(n)), each CFG
node i in turn being replaced by the pair 〈n, i〉. There are interprocedural arcs between n’s
predecessors and the entry node of n’s new CFG, and between this CFG’s exit nodes and
n’s successors.
L is the domain of the dataflow problem. In our case, it is the set of locks that could be

held by thread t. As our problem models the notProtects property, node 〈n, i〉 having the
value L, i.e. the entire domain, means it is not protected by any lock.

Our set of distributive dataflow functions is:

F = {acquireLockk, releaseLockk | k ∈ L} ⊂ 2D → 2D

acquireLockk(l) = l \ {k}
releaseLockk(l) = l ∪ {k}

M : (N× I)× (N× I)→ F is the mapping between G∗’s edges and the dataflow functions:

M(〈n, i〉, 〈ns, is〉) =



acquireLock〈n,v〉 if n = ns ∧ i acquires a lock on v

releaseLock〈n,v〉 if n = ns ∧ i releases the lock from v
acquireLock〈ns,vthis〉 if n 6= ns ∧ is is a CFG entry node ∧

∧πM(ns) is a synchronized method
releaseLock〈n,vthis〉 if n 6= ns ∧ i is a CFG exit node ∧

∧πM(n) is a synchronized method
acquireLock〈ns,oC〉 if n 6= ns ∧ is is a CFG entry node ∧

∧πM(ns) is a synchronized method
of class object oC (i.e., it is static)

releaseLock〈n,oC〉 if n 6= ns ∧ i is a CFG exit node ∧
∧πM(n) is a synchronized method
of class object oC (i.e., it is static)
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Our approach is similar to [Naik et al. 2006] but we choose to represent locks as variables
in call graph nodes, not as a subset of the abstract objects from the abstract heap graph.
Another differentiating aspect is that we express the lockset problem as an IFDS problem
instead of a graph traversal. Graph traversal is a meet-over-all-paths solution, while the
IFDS framework gives a more precise, meet-over-all-valid-paths, solution [Reps et al. 1995].
The precision advantage is obtained without enumerating all paths so the analysis speed
penalty is generally low. Furthermore, the IFDS-based approach allows IteRace to analyze
not only synchronization which uses synchronized blocks and methods, but also synchro-
nization which uses Java classes implementing the Lock interface. Using IFDS for computing
locksets is mentioned by [Qi et al. 2009] but they do not explain their implementation or
encoding.

3.5. Synchronized accesses

IteRace can now filter the races based on the abstract lockset information. A race
〈〈nα, iα〉, 〈nβ , iβ〉〉 is filtered out if the intersection of the sets of abstract objects pointed to
by their abstract locksets is not empty:

{o | ∃ k ∈ protects(nα, iα) . o ∈ points-to(k)}∩{o | ∃ k ∈ protects(nβ , iβ) . o ∈ points-to(k)} 6= ∅
We filter safe accesses at two levels: once on an initial set of races, as in previous work

[Naik et al. 2010], and once after the Bubble-up. Our evaluation revealed that applying the
algorithm after Bubble-up is slightly faster and more effective. The reason lies in the library
objects’ abstraction imprecision. A single call graph node of a library method abstracts
multiple runtime invocations. When invocations that are protected by application-level
synchronization are conflated with unprotected invocations, and locksets are checked at
library level, all accesses are considered unsafe. If the accesses are checked at application-
level, the tool has better chances of distinguishing safe accesses.

4. DISCUSSION

In this section we discuss IteRace’s safety, speed, usability, and reusability.

4.1. Soundness

IteRace is subject to the typical sources of unsoundness for static analysis, i.e., it has only
limited handling of reflection and native method calls, to the extent provided by WALA.

The Synchronized phase unsafely uses may-alias information to approximate must-alias
lock relations. The analysis can easily be adapted to use a must-alias analysis once a scalable
must-alias analysis is available. Also, our evaluation shows that the Deep-Synchronized
and Synchronized phases have much less warning-reduction effect than the others. The
programmer can choose to deactivate these phases to get safer results.

The Filtering technique relies on the programmer specifying which methods
and classes are thread-safe, transitively-thread-safe, instantiates-only-safe-objects, or
circulates-unsafe-objects (Section 3.2). An incorrect specification may lead the analysis to
miss true races. We have already specified the thread-safety characteristics of a large num-
ber of JDK classes and methods by using the javadocs as a guide. A programmer using
IteRace may need to extend this if she uses other libraries containing thread-safe classes.

4.2. Monitor structure

IteRace is designed to analyze the lambda-style loop-parallel parts of the program and
cannot reason about concurrency that appears by spawning other threads besides the ones
used by the parallel loops. Nested parallel loops are also not supported. In such cases,
IteRace warns the programmer about the potentially unsafe thread spawn. Extending our
tool to handle other concurrency constructs should be straightforward. The Bubble-up and
Filtering techniques could be applied directly and would be beneficial. 2-Threads would
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not be applicable directly but its underlying idea could prove useful in designing similar
techniques for other thread structures. Also, our analysis does not handle cases where the
parallel collection is updated outside collection operators, e.g., using explicit loops.

4.3. Programmer effort

The Bubble-up and Filtering techniques require some input from the programmer regarding
the library and thread-safety characteristics of classes and methods. The specifications are
not mixed with the code but are kept in separate files as regular expressions matching class
and method names. IteRace already contains specification files for commonly used classes.

Bubble-up asks the programmer to mark the classes that should be considered as library
code. These markings can also be used for understanding the fault leading to the reported
races – Section 3.3 gives a description of this process and Section 6 evaluates the programmer
effort involved. We do not believe the process can be significantly automated because most
of the developer time is not spent interacting with the tool, but understanding the analyzed
code. The gradual unfolding (marking fewer and fewer classes as library code) is a way
for the developer to understand the fault underlying the race warning (or, of course, to
understand that it is actually a false warning). While improvements could be made to the
user experience (e.g., precomputing the results of running the tool using various library-
marking depths so that the developers would not have to wait for results), and techniques
such as delta debugging may offer speed-ups, we do not envision a complete automation of
this process of understanding.

As mentioned in Section 4.1, Filtering relies on thread-safety specifications of library
classes which are given by the programmer. We have already specified the characteristics of
many JDK classes. Our specifications are based on the documented behavior of the classes
(e.g., ConcurrentHashMap is documented as being thread-safe and we mark it as such). We
assume the documented behavior is correct. The effort is minimal as the specifications are
in most cases a direct translation of the documentation.

The current thread-safety specification files have, cumulatively, around 120 short reg-
ular expressions (generally, each regular expression matches one package, one class,
or one method – e.g., “java.util.concurrent.ConcurrentHashMap.*” marks the entire
ConcurrentHashMap class as thread-safe). Just five of the regular expressions are specific
to the applications used in our evaluation; the rest match JDK code. Thus, in our experi-
ence, the programmer needs to add extra thread-safety markers in very few cases.

4.4. Optimization

An early implementation of IteRace was severely slowed down by the data structure storing
the set of races. In the early implementation, the races were simply stored as a set of pairs
of accesses. As the number of potential races, i.e. before being filtered and before flattening
the context sensitivity, can be very large (up to a few millions in our experiments), the set
storing them consumed large amounts of memory and iterating over the set for filtering was
very slow. The solution is to store the races in a specialized, hierarchical, data structure.
The structure is similar to the way IteRace reports races, explained in Section 2. The
races are grouped by loop, then by object, and finally by field. The final subgroup of races
is then recored not as a set of pairs of accesses but as a pair of sets of accesses, with the
interpretation that any access in the first set may race with any access in the second set.
This structure not only has a smaller memory footprint, but is cheaper to construct (no set
membership checks) and it speeds up filtering. E.g., if we know that a particular object is
thread-safe, we can simply remove all groups of races on that object without iterating over
them. Furthermore, IteRace tries to filter races as early as possible, e.g., races in thread-
safe methods are simply not added to the race set, instead of being removed afterwards.
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4.5. Reuse

While 2-Threads is specific to parallel programs, Filtering and Bubble-up may be of interest
to other race detector developers. Filtering can be easily adapted to other thread structures,
and the cost of marking the thread-safety properties of library classes is not high, with
most of the markings (e.g., JDK) shared among analyzed applications (see Section 4.3).
The iterative approach based on Bubble-up can be adapted to other contexts where the
programmer has to understand complex interactions revealed on deep static call graphs.

5. EVALUATION METHODOLOGY

We evaluate our tool by answering the following questions:

(1) Is IteRace practical? As the main shortcoming of static race detection is the high
number of warnings, we gauge practicality by the number of warnings the programmer
has to inspect. Precision is also important so we also check how many of the reported
warnings lead to true races. For context, we also compare our tool with a state of the
art, but general, data race detection tool for Java, JChord[Naik et al. 2006].

(2) What is the impact of each specialization technique? For each specialization
technique we analyze how much it reduces the number of warnings and how it affects
runtime. We measure each specialization technique as applied individually and in com-
bination with other techniques.

Table I: Evaluation suite. Column 2 shows in parentheses which part of the application
has been parallelized. Column 3 shows the source lines of code (i.e., without comments or
blank lines) for the application and its libraries. Column 4 shows the number of methods
analyzed by IteRace. The size of library code varies as some applications use extra libraries
besides JDK. The number of methods reflects methods reached by the race detector.

Description SLOC (k) #
Project (parallel section) (app+lib) methods

MC Monte Carlo simulation 1.4 + 220 252
(the separate simulations) [Bull et al. 1999]

Em3D 3D EM wave propagation simulation 0.2 + 220 80
(force update) [Cahoon and McKinley 2001]

Coref NLP Coreference finder 41 + 225 927
(processing documents) [Bengtson and Roth 2008]

WEKA data mining software 301 + 253 1236
(generation of clusterers) [Hall et al. 2009]

Lucene Lucene search benchmark 48 +220 2363
(separate searches) [Blackburn et al. 2006]

JUnit testing framework 16 + 220 508
(JUnit’s own test suite)

CIlib computational intelligence library 53 + 454 1957
(simulation engine)

We evaluate our approach by using IteRace to analyze the 7 open-source Java projects
shown in Table I. Then, we use JChord to analyze the same projects under the same condi-
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tions and compare the results. Finally, we measure the impact of each of our specialization
techniques.

5.1. Case studies

When building the evaluation suite, we first looked for applications with parallel imple-
mentations that used loop-parallelism. Unfortunately, the lack of a proper loop parallelism
library in JDK has discouraged programmers from parallelizing their programs. We have
only found three applications where programmers have used a form of loop parallelism to
improve the performance of their application, i.e., Lucene, JUnit, and CIlib. Thus, we looked
further to applications that have sequential implementations but where the underlying al-
gorithm is inherently parallel and included four more applications, i.e., MonteCarlo, Em3D,
Coref, and WEKA.

The evaluation suite is heterogenous: it has applications from different domains (bench-
marks, NLP, data mining, computational intelligence, testing) and of various sizes, from
hundreds of lines of code to hundreds of thousands. Table I shows a short description of
each application and indicates which part of it is parallel, the application’s size in lines of
code, and the number of methods analyzed by our tool.

As Java 8 has only been recently released, analysis tools, including WALA, do not yet
have support for its new features, in particular for lambda expressions. In Java, anything
that can be expressed through lambda expressions can also be expressed, more verbosely,
using anonymous classes. For evaluation purposes, we created a collection-like class based
on ParallelArray [Par 2015] that exposes part of the new collection methods introduced
in Java 8, but implemented with anonymous classes (e.g., .forEach(p −> { ... }) becomes
.forEach(new Procedure<Particle>() { public void op(Particle p) {...} })). Once WALA han-
dles lambda expressions, adapting the implementation will be trivial.

For already-parallel applications, we manually adapted the implementation to use our
collection. We changed the original implementations as little as possible, i.e., we neither
performed any additional refactoring, nor fixed any races.

For the sequential applications, we parallelized each of them by performing the following
steps:

(1) run the YourKit [You 2015] Java profiler to identify the computationally intensive loop
and the data structure it is iterating over.

(2) refactor the data structure into our parallel collection.
(3) refactor all loops over the data structure to use operators instead of for. The compu-

tationally intensive loop is refactored to run in parallel, while the rest are transformed
to anonymous-class-operator form.

As with the already-parallel application, we limited the changes to what was necessary to
fit the computation to the parallel collection API. We did not fix any races introduced by
the parallelization. We only ensured the semantic equivalence by running the refactored
versions on the same data sets and checking the outputs - we did not formally prove the
modulo-data-races equivalence.

5.2. Measuring IteRace’s performance

We first analyze each application using IteRace with all the specialization techniques
activated. We inspect each generated race warning in order to determine its root fault.
Each race warning can be seen as a possible error. Typically, one fault can lead to multiple
errors. In our case, one fault may lead to multiple warnings. If we cannot find a fault for a
particular warning, we deem it as false.

For each of the applications in the test suite, we first run the analysis without any classes
(in addition to JDK) marked with is-library (see Section 3.3, which discusses the Bubble-up
technique). If there are no races or the faults generating the races are clear, we do not take
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any further step. Still, for some of the applications, despite our techniques reducing the
number of warnings by orders of magnitude, we still found ourselves needing to analyze
tens to hundreds of warnings. Many of the warnings were over ten levels deep in the call
graph, counting from the parallel loop. Figuring out whether the racing accesses are actually
reachable during an actual execution, let alone whether truly shared objects can reach them,
proved very challenging.

The solution came from using our Bubble-up technique in the iterative approach described
in Section 3.3. In our experiments, it took up to 10 analysis reruns in order to find the set of
library markings that best describe the fault. Cumulatively over all benchmarks, we needed
just under 50 library markings given as simple regular expressions (see Section 4.3). For each
application, it took us between a few minutes (for Em3D, MC, and JUnit) and a few hours
(for Coref and Lucene) to reach the level where we fully understood all the reports. Most
of the time was spent understanding the code so that we can answer the above question.
We are not experts in the applications we analyzed, so we expect this effort to be lower
for developers more familiar with the code. The results presented in the paper reflect this
optimal balance.

Finally, we also analyze all applications with selectively deactivating various techniques
to reveal their effect upon the analysis as a whole. When a technique is deactivated, its
associated pointer analysis context sensitivity customizations are also deactivated. In addi-
tion to the three main techniques (2-Threads, Filtering , and Bubble-up), we also measure
the effect of filtering warnings that come from correctly synchronized code, both at deep
and at application level (see Section 3.5). Thus, there are five distinct parts of the analysis
that can be turned on and off, hence 32 possible configurations. We run the analysis in all
32 configurations over all the applications. For each run, we measure runtime and number
of warnings.

The machine running the experiments is a quad-core Intel Core i7 at 2.6 GHz (3720QM)
with 16 GB of RAM. The JVM is allocated 4 GB of RAM. We implemented the race-
detection techniques in Scala and we use the static analysis framework WALA, which is
implemented in Java.

5.3. Comparison with JChord

We also analyze all projects using JChord. We have asked Mayur Naik, JChord’s lead
developer, for advice on how to best configure the tool. Accordingly, we configure JChord
such that:

— it also reports races between instructions belonging to the same thread. By default,
JChord only reports races between distinct abstract threads. As it models the threads
executing a parallel loop as one abstract thread, the default behavior would ignore
all races in parallel loops. Additionally, we have implemented a small tool that filters
JChord’s reports to remove races between the abstract thread representing the parallel
loop and main thread. Such warnings are obviously false and are easy to filter out, so we
considered it fair towards JChord to disregard them.

— it ignores races in constructor code. This reduces significantly the number of false pos-
itives reported by JChord but adds a source of unsoundness. While rare, constructors
can have races, e.g., a constructor reads an object’s field while another thread writes it.
IteRace does not ignore races in constructors.

— it does not use conditional-must-not-alias analysis [Naik and Aiken 2007] as it is not
currently available.

Additionally, we set JChord to ignore classes that IteRace models as
transitively-thread-safe and not circulates-unsafe-objects. This increases the tool’s precision
without hampering safety.
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Table II: Overall results. For JChord, the “#” column shows the number of warnings.
“full” is the number of warnings reported by IteRace when all techniques are activated.
“�����Bubble-up” has all techniques except Bubble-up activated. The analysis time for IteRace
is with all techniques activated. “real” is how many of the warnings are real races (out of
“full” for IteRace). Multiple warnings may be caused by the same program “fault”. A
warning may be false or benign, thus mapping to no fault. For MC, there is a real but
benign race: multiple threads write the same constant to the same field in parallel.

JChord IteRace (our tool)

warnings warnings

project t(s) # real t(s) �����Bubble-up full real faults

Em3D 20 15 0 4.0 0 0 0 0
MC 22 44 1 6.5 1 1 1 0
JUnit 24 123 0 9.6 0 0 0 0
Coref 85 19.5k - 101.0 138 32 24 2
Lucene 95 53.4k - 122.9 775 19 2 2
WEKA 156 19.6k - 155.9 400 1 1 1
CIlib 271 21.4k - 84.0 179 2 2 1

JChord gives a very high number of warnings with their accesses deep in the call graph.
We attempted to also inspect whether some of the warnings are true but it proved very
difficult. As it was originally the case with IteRace, it is very hard to determine if a race
reported deep in the application or library code is true. In the end, we could only complete
the inspection for three of the case studies.

6. EVALUATION RESULTS

We first present our experience analyzing the evaluation suite applications using IteRace.
Afterwards, we dig deeper and examine how effective is each of the techniques individually
and in combination with others.

Table II shows an overview of the results. For context, the first three data columns show
JChord’s performance analyzing the evaluation suite applications. The next columns show
IteRace’s performance over the same applications.

A static race detection tool’s runtime and results are heavily dependent on the underlying
pointer analysis. Since JChord and IteRace have different underlying pointer analyses
and abstraction choices, for the same application, their results differ both in terms of time
and number of warnings. Still, JChord’s results can give an idea about the effectiveness of
a tool not implementing our techniques.

In terms of analysis time, our tool is faster for five out of the seven applications. JChord
is slightly faster for two of the larger applications. On the one hand, JChord pays a penalty
for its implementation communicating between various stages of the analysis through text
files. On the other hand, IteRace’s custom context sensitivity makes its pointer analysis
slightly more expensive than JChord’s context insensitive approach. Furthermore, our
IFDS lockset algorithm is more expensive than JChord’s graph traversal. Overall, the
analyses times of both tools is low enough to be practical.

In terms of warnings, JChord reports an overwhelming number of warnings for five out
of the seven applications (the table shows the number of warnings after the post-processing
described in Section 5.3). For Em3D and JUnit the number of warnings is low enough to
be inspected but all of the warnings are false.
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For IteRace, we report here the number of warnings under two distinct configurations:
with all the techniques activated (“full”), and with all techniques but Bubble-up activated
(“no-Bubble-up”). We first discuss IteRace’s results with all techniques activated.

For two applications, our tool doesn’t report any races, correctly deeming them safe. For
five out of the seven applications IteRace only identified the correct races, i.e. it did not
report any false warnings. In our experience, after Bubble-up, the number of warnings is
very low, and the reported accesses are close to the parallel loop body and they are a good
indicator of the underlying fault. The Bubble-up technique requires some programmer effort
in gradually removing library markings (see Section 5.2). Thus, for a direct comparison
with JChord, we also show, under the “no-Bubble-up” column the number or races with
Bubble-up deactivated. Deactivating Bubble-up is the same as having no classes (not even
JDK) marked as library code, thus requiring the same amount of effort as JChord.

Let us look at the issue of missed races. IteRace’s underlying approach is very similar to
JChord’s. Synchronized is the application-level version of the same may-alias lockset-based
filtering used in JChord. 2-Threads and Bubble-up are inherently safe and Filtering is safe
when used correctly (see Section 4). Thus, it is highly unlikely that IteRace will miss any
true races JChord finds.

Furthermore, at first glance, the number of warnings may seem large (32 and 19 in the
case of Coref and Lucene, respectively). Still, the way IteRace reports them makes them
easy to understand. As shown in Section 2, in IteRace’s standard output the races are
not reported as pairs but as race sets on fields of abstract objects. A race set on one field
of an object is shown as a set of α accesses and a set of β accesses - races are obtained
by cross-product. E.g., one single race set of 4 write (α) accesses and 5 β accesses would
generate 20 race warnings, as counted in Table II. Still, it is relatively easy for a programmer
familiar with the application to inspect 4+5 accesses involving the same field of the same
object.

6.1. Case studies

Em3D and JUnit are race free and IteRace correctly reports no warnings for any of them.
MC contains a benign race where a static global is initialized with the same value in every
iteration. This is a true race but cannot be considered a fault. We have not accounted for
this type of scenario so our tool issues a warning. JChord found this race, also.

Coref is one of the applications that we parallelized ourselves and we contributed back the
parallel version. The developers of the project told us that there is no interaction between
the iterations of the parallel loop. IteRace reports 32 warnings out of which 24 are true.
The false warnings were due to WALA’s imprecise modeling of Java object cloning. Most
of the warnings are rooted in the sharing introduced via two static fields used for caching
purposes. The developers confirmed the faults and fixed the application by making the static
fields thread-local.

For Lucene, IteRace reports 19 warnings out of which 2 are true. First, there is an
unsynchronized access to a custom, thread-unsafe, String interning class. Second, there is
an unsynchronized access to a factory method of the DateFormat class. The access leads to
an atomicity violation in the JDK LocalServiceProviderPool class. We reported the problem
to the JDK developers. The problem is mostly benign assuming correct implementation of
other classes. Still, it had already been fixed in the latest JDK release.

For WEKA, the analysis hits the right target with great precision. While running the
analysis at a deeper level also yields false positives, after Bubble-up, the analysis only makes
one warning report, a correct one: all loop iterations share the same thread-unsafe custom
collection object.

For CIlib, the analysis is again very precise, reporting only two warnings, both true. We
reported them to CIlib developers and they confirmed and fixed the fault [CIl 2015].
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Table III: Runtime under various configurations. (seconds)
T - 2-Threads, F - Filtering, B - Bubble-up, S - Synchronized

T F B S Em3D MC JUnit Coref Lucene WEKA CIlib avg.

3.9 5.1 6.7 34.1 23.8 56.9 29.6 15.2
• 4.0 6.2 8.7 67.0 140.5 151.1 49.5 28.6

• 4.0 6.0 7.8 354.3 428.1 131.5 54.1 41.3
• • 4.0 6.7 9.2 536.7 571.9 163.4 62.3 50.1

• 4.0 5.0 6.7 36.5 27.5 3307.5 29.2 27.9
• • 4.0 5.4 7.5 47.1 62.1 6448.7 36.4 38.0
• • 4.0 5.1 6.8 38.9 31.5 60.9 30.6 16.4
• • • 4.1 5.5 7.5 43.9 51.0 74.8 34.6 19.3

• 4.1 5.2 7.7 74.9 42.0 92.7 68.4 22.9
• • 4.1 6.5 9.6 124.2 255.2 334.0 111.7 43.7
• • 4.0 5.4 8.0 80.8 46.3 101.9 72.4 24.2
• • • 4.0 6.6 9.6 116.7 146.5 232.9 101.1 37.4

• • 4.0 5.3 7.7 90.0 49.0 109.6 72.4 24.8
• • • 4.1 6.3 9.8 102.8 142.9 157.7 83.5 33.8
• • • 4.2 5.3 7.7 87.9 49.7 102.1 67.7 24.4
• • • • 4.0 6.5 9.6 101.0 122.9 155.9 84.0 32.8

In a previous version of IteRace [Radoi and Dig 2013], precision was dropping signif-
icantly when aiming the analysis at some parts of CIlib’s extensive algorithm library. It
was raising many false warnings along with the aforementioned true ones. We traced many
of the false warnings to a source of imprecision in WALA’s pointer analysis method call
abstraction: WALA propagates all actual parameter objects to the formal parameters of all
target call graph nodes, regardless of object context sensitivity. This made the technique
described at the end of Section 3.1 less effective when the actual parameter points to both
shared and non-shared objects. We have since improved WALA’s pointer analysis engine
to overcome this issue and configured IteRace’s context sensitivity to make better use of
the improved precision. This resulted in a significant drop in the number of false positive
warnings for Lucene and CIlib (from 97 to 19, and from 735 to 2, respectively1).

Generally, we found that IteRace performs well on new programs. Still, we do expect
that the tool’s performance would degrade for programs that make heavy use of reflection
– none of the programs in our evaluation did. In terms of programer effort, each new case
study did not require many new tread-safety markings. On the contrary, we were able to
reuse many of the specifications written previously. We just needed to add one marking for
WEKA and two markings for each of CIlib and Coref. One of the CIlib markings was for
the Vector class in Guava, a third-party library.

6.2. Effect of each specialization technique

Tables III shows the runtime and Table V shows the number of warnings reported by our
analysis under 16 of the 32 possible configurations. We are not showing results for filtering
warnings based on deep synchronization for all configurations due to its limited impact –

1The “from” numbers are from experiments ran after compiling IteRace with the latest WALA version.
They differ from our previous work. This is likely due to changes to WALA that occurred in the meantime.
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Table IV: Runtime breakdown for the best configuration. (seconds)

Stage Em3D MC JUnit Coref Lucene WEKA CIlib

pointer analysis 3.8 5.1 7.3 85.1 46.5 102.7 67.3
potential races 0.1 0.2 0.4 3.6 2.8 3.4 3.2
locksets algorithm 0.0 1.0 1.8 11.8 71.8 49.1 13.3
other 0.1 0.2 0.1 0.5 1.2 0.7 0.2

Total 4.0 6.5 9.6 101.0 122.9 155.9 84.0

Table V: Number of warnings under various configurations.
(racing pairs of accesses)
T - 2-Threads, F - Filtering, B - Bubble-up, S - Synchronized

T F B S Em3D MC JUnit Coref Lucene WEKA CIlib

1 2477 2370 66K 135K 50K 67K
• 1 2471 2334 66K 133K 50K 39K

• 1 747 222 516K 228K 6148 9686
• • 1 747 207 516K 226K 6143 9637

• 1 179 48 15K 28K 6647 8120
• • 1 147 20 15K 26K 6515 8115
• • 1 155 36 473 8278 1344 2048
• • • 1 155 30 473 6391 1267 2039

• 0 53 87 14K 15K 5450 21K
• • 0 53 70 14K 13K 5377 3104
• • 0 3 3 18K 2426 139 518
• • • 0 3 0 18K 538 139 476

• • 0 1 17 138 2099 415 183
• • • 0 1 0 138 775 400 179
• • • 0 1 3 32 1906 1 8
• • • • 0 1 0 32 19 1 2

see the end of the section. Each row shows the results for one configuration – a dot denotes
an activated technique.

The best results, i.e., the lowest number of warnings, are obtained when all techniques
are activated (last row of Table V).

In the best configuration, IteRace finishes the analysis in under three minutes for all
applications and in around half a minute on average. Table IV shows a breakdown of the
time spent in different stages of the analysis for the best configuration (last row in Table
III). The underlying pointer analysis dominates the running time, followed by the IFDS
lockset allocation algorithm (Sec. 3.4). Creating the potential races set is fast thanks to the
hierarchical data structure described in Sec. 4.4. The other stages have a negligible effect.

Tables VI, VII, VIII, and IX highlight the effect of activating/deactivating each technique
on the number or warnings. These tables are derived from Table V. The value in each cell is
the ratio between the number of races on a certain configuration with the technique deacti-
vated and the number of races with the technique activated. For example, the value in cell at
the intersection of the next to last row (Filtering and Bubble-up activated, Synchronized de-
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Table VI: Effect of 2-Threads on the number of warnings. (improvement ratio, see
third paragraph of Sec. 6.2)

F B S Em3D mc JUnit Coref Lucene WEKA CIlib

∞ 46.74 27.24 4.44 8.68 9.30 3.11
• ∞ 46.62 33.34 4.45 9.84 9.41 12.76

• ∞ 249.00 74.00 27.38 94.28 44.23 18.70
• • ∞ 249.00 ∞ 27.38 421.63 44.19 20.25

• ∞ 179.00 2.82 111.68 13.51 16.02 44.37
• • ∞ 147.00 ∞ 110.72 34.70 16.29 45.34
• • ∞ 155.00 12.00 14.78 4.34 1344.00 256.00
• • • ∞ 155.00 ∞ 14.78 336.37 1267.00 1019.50

Table VII: Effect of Filtering on the number of warnings. (improvement ratio, see
third paragraph of Sec. 6.2)

T B S Em3D MC JUnit Coref Lucene WEKA CIlib

1.00 13.84 49.38 4.30 4.79 7.63 8.28
• 1.00 16.81 116.70 4.34 4.97 7.77 4.88

• 1.00 4.82 6.17 1092.23 27.63 4.57 4.73
• • 1.00 4.82 6.90 1092.23 35.49 4.85 4.73

• NaN 53.00 5.12 108.12 7.45 13.13 117.99
• • NaN 53.00 ∞ 107.85 17.51 13.44 17.34
• • NaN 3.00 1.00 589.75 1.27 139.00 64.75
• • • NaN 3.00 NaN 589.75 28.32 139.00 238.00

activated) and the “JUnit” column in Table VI is obtained from Table V, column “JUnit”,
by dividing the cell in row 7 (2-Threads deactivated, Filtering and Bubble-up activated,
Synchronized deactivated) by the cell in the next to last row (2-Threads how activated,
Filtering and Bubble-up activated, Synchronized deactivated). A higher ratio means the
activated technique filters out more warnings, which is an improvement. ∞ denotes a sit-
uation where the number of warnings is reduced to 0. 1.0 means no improvement. NaN
denotes a situation where the number of warnings was 0 with the technique deactivated and
it remains 0. A subunitary value means that the number of warnings has increased.

Table VI shows that 2-Threads (modeling each loop with two distinct threads) signif-
icantly improves the results independent of other techniques. Upon inspection we found
that, as expected, the filtered out warnings are on objects that are thread-local by being
either created and not escaped from the current iteration or unique to each element of
the collection. In the case of Em3D, activating 2-Threads correctly removed all warnings,
independent of the other techniques.

Table VII shows that Filtering has a powerful effect for all larger applications. Deacti-
vating the Filtering phase is equivalent to not giving any thread-safety specifications. The
filtered out warnings mostly involve accesses to library classes, e.g., synchronized I/O, Java
security, regex, and concurrent or synchronized collections.

Table VIII shows the effect of Bubble-up. Its main value is not in reducing the number
of warnings but in making them more programmer friendly. As the technique maps deep
warnings into application-level warnings, and, as it is common for one library class to be
used repeatedly throughout the application, Bubble-up may inflate the number of warnings.
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Table VIII: Effect of Bubble-up on the number of warnings. (improvement ratio, see
third paragraph of Sec. 6.2)

T F S Em3D MC JUnit Coref Lucene WEKA CIlib

1.00 3.32 10.68 0.13 0.59 8.25 6.94
• 1.00 3.31 11.28 0.13 0.59 8.24 4.11

• 1.00 1.15 1.33 32.58 3.43 4.95 3.96
• • 1.00 0.95 0.67 32.30 4.21 5.14 3.98

• NaN 17.67 29.00 0.79 6.45 39.21 41.68
• • NaN 17.67 ∞ 0.79 25.23 38.68 6.52
• • NaN 1.00 5.67 4.31 1.10 415.00 22.88
• • • NaN 1.00 NaN 4.31 40.79 400.00 89.50

Table IX: Effect of Synchronized on the number of race warnings. (improvement
ratio, similar to Table 5).

T F B Em3D MC JUnit Coref Lucene WEKA CIlib

1.00 1.00 1.02 1.00 1.02 1.00 1.70
• 1.00 1.00 1.07 1.00 1.01 1.00 1.01

• 1.00 1.22 2.40 1.01 1.05 1.02 1.00
• • 1.00 1.00 1.20 1.00 1.30 1.06 1.00

• NaN 1.00 1.24 1.00 1.15 1.01 6.96
• • NaN 1.00 ∞ 1.00 4.51 1.00 1.09
• • NaN 1.00 ∞ 1.00 2.71 1.04 1.02
• • • NaN 1.00 ∞ 1.00 100.32 1.00 4.00

This effect is revealed by the sub-unitary values in rows 1, 2, 4, 5, and 6. Still, when combined
with Filtering (rows 3, 4, 7, and 8) the negative effect is reversed and we see improvement in
most cases. This is because most extra warnings came from correctly-synchronized library
classes.

Table IX shows that, surprisingly, the lockset-based static filtering, i.e., Synchronized ,
does little to improve analysis results for larger projects, even in the absence of Filtering .
The only project where Synchronized has a very significant impact is Lucene. Also, for
JUnit, Synchronized removed 3 false warnings, bringing the number of reports to 0. For
CIlib, Synchronized eliminated 6 warnings, leaving behind only the 2 true warnings.

7. RELATED WORK

7.1. Dynamic analyses

Dynamic race detectors have been the favored approach in the last decade. Their main
advantage over static approaches is the significantly lower number of false warnings. This
advantage is counterbalanced by dynamic analyses’ failure to catch races that are not “close”
to the analyzed execution and the high runtime cost of the more precise tools. A common
approach is to compute some form of order relation, e.g. happens-before, over the events of
an observed execution trace and, based on these relations, infer race conditions [Christiaens
and De Bosschere 2001; Ronsse and De Bosschere 1999; Adve et al. 1991; Choi et al. 1991;
Mellor-Crummey 1991; Dinning and Schonberg 1990; Schonberg 1989; Smaragdakis et al.
2012]. This approach can miss many races so lockset-based race detectors have been devel-
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oped as an alternative that catches more races at the expense of false positives [Nishiyama
2004; von Praun and Gross 2001; Savage et al. 1997; Choi et al. 2002]. There are also hybrid
approaches that combine both techniques [Yu et al. 2005; Pozniansky and Schuster 2007;
Chen et al. 2008; Flanagan and Freund 2009].

Notable in the context of our specialized race detector, Raman et al.[Raman et al. 2010;
2012] take advantage of the structured (async) parallelism in the analyzed program to
significantly reduce the overhead introduced by dynamic race detection. They use a repre-
sentation of the dynamic thread structure to get a more compact memory access history.
Like us, they found that specialization improves the effectiveness of previous techniques.

Similar to dynamic race detectors, static race detectors also vary between higher precision,
lower scalability [Henzinger et al. 2004; Naik and Aiken 2007] and lower precision, better
scalability [Pratikakis et al. 2006; Naik et al. 2006; Voung et al. 2007; Kahlon et al. 2009;
Pratikakis et al. 2011]. Also, annotations can be used to improve the performance of the
analysis [Abadi et al. 2006].

7.2. Static analyses for C and other languages

Several race analyses have been proposed for C or variants [Engler and Ashcraft 2003;
Grossman 2003; Qadeer and Wu 2004]. Henzinger et al. [Henzinger et al. 2004] present a
model checking approach that is both path and flow sensitive, and models thread contexts.
Pratikakis et al. present Locksmith [Pratikakis et al. 2006; 2011], a type-based analysis
that computes context-senstitive correlations between lock and memory accesses. Relay
[Voung et al. 2007] proposes a slightly less precise but more scalable analysis that sum-
marizes the effects of functions using relative locksets. Although they are now applied to
C programs, both of these techniques could be adapted to improve the precision of Java
analyses, including ours.

The polyhedral model can be used for detecting races [Feautrier 1991; Yuki et al. 2013;
Basupalli et al. 2011]. Still, so far, the polyhedral approach has been limited to array-
manipulating programs with restricted control-flow (e.g., there is no support for objects or
recursive functions).

7.3. Static analyses for Java

Flanagan et al. [Flanagan and Freund 2000] proposed using type checking systems to find
races. Boyapati et al. [Boyapati and Rinard 2001; Boyapati et al. 2002] introduced the
concept of ownership to improve the results. Type-based systems perform very well but
they require a significant amount of annotation from the programmer. Different approaches
have been proposed to automatically infer the annotations [Flanagan and Freund 2001;
Agarwal and Stoller 2004; Rose et al. 2005; Flanagan and Freund 2007].

Praun et al. [von Praun and Gross 2003] propose an Object Use Graph model that
statically approximates the happens-before relation between accesses to a specific object.

Choi et al. [Choi et al. 2001] proposes a thread-sensitive but context-insensitive race de-
tector. They use the strongly connected components of an inter-procedural thread-sensitive
control flow graph to compute must-alias relations between locks and threads. Using this,
they find a limited number of definite races. IteRace uses the idea of thread-sensitivity
but specializes the modeling of the parallel loops, significantly increasing precision.

Naik et al. [Naik et al. 2006] builds an object-sensitive analysis that uses thread-escape
to lower the false positive rate. In a subsequent article [Naik and Aiken 2007], they present
a conditional-must-not-alias analysis for solving aliasing relationships between locks.

8. CONCLUSION

By specializing static data race detection, we can make it practical. This paper presents
three techniques, implemented in a tool IteRace, that is specialized to the new parallel
features for collections that have been introduced in Java 8. The restricted thread structure
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of parallel loops combined with loop operations expressed as lambda expressions allows for
better precision in the heap modeling while maintaining scalability.

Our evaluation shows that the tool implementing this approach is fast, does not hinder
the programmer with many warnings, and it finds new bugs that were confirmed and fixed
by the developers. Thus, IteRace can also be used in scenarios with high interactivity,
e.g., refactoring for parallelism [Dig et al. 2009b; Gyori et al. 2013; Dig et al. 2009a], that
require fast and precise analyses.
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