
Inclusion-based pointer analysis using actors

Cosmin Radoi
University of Illinois

cos@illinois.edu

Semih Okur
University of Illinois
okur2@illinois.edu

Abstract
Ubiquitous multicore computers and affordable cloud com-
putation services provides a great opportunity for increasing
the speed or precision of program analysis algorithms. We
present the first parallel algorithm for a context and field
sensitive inclusion-based (Andersen-style) pointer analysis
with on-the-fly call graph construction. We show how the
pointer analysis and call graph construction can be naturally
modeled as an actor system. We implement the algorithm as
a drop-in replacement of WALA’s (T.J.Watson Libraries for
Analysis) pointer analysis and allow for all the flexibility of
the original library, i.e., highly configurable context sensi-
tivity, pointer and instance abstraction, etc. We measure the
parallel scalability of our algorithm and compare it to the the
highly-optimized WALA implementation. We discuss the re-
sults, limitations, and avenues for improvement.

1. Introduction
Pointer analysis determines which memory locations are
referenced by the pointers in the program. This informa-
tion is fundamental to a large variety of program verifica-
tion, optimization, and comprehension techniques [10]. Pre-
cise pointer analysis is NP-hard [12] but there are well-
researched algorithms that trade precision for better perfor-
mance [4, 20].

Inclusion-based pointer analysis, introduced by Ander-
sen [4], is on the more precise end of the scale. It com-
putes pointer information by solving a constraint graph with
nodes being pointers in the program and edges inclusion re-
lations between the sets of memory locations (i.e., objects
in OOP languages) referenced to by the pointers. An ini-
tial constraint graph is constructed by parsing the program,
with assignments generating inclusion relations and pointer
dereferences generating special indirect constraints that can
only be solved once the points-to information is known.

[Copyright notice will appear here once ’preprint’ option is removed.]

Thus, pointer information is computed by iteratively solv-
ing the constraint graph and adding new inclusion relations
from indirect references.

Subsequently, there has been a great deal of work improv-
ing the precision of the original algorithm by adding differ-
ent types of context sensitivity [16, 19] or varying flow sen-
sitivity [11, 14].

Pointer information is also fundamental to computing a
precise call graph in languages with dynamic dispatch, as
the set of possible target methods can be refined by knowing
the possible instances pointed to by the a method’s receiver.
But pointer analysis can also gain precision and speed from
a more precise call graph by not considering the effects
of unreachable methods. This mutual dependency led to
algorithms that compute the call graph on-the-fly, along with
the points-to graph. This approach also allows for context-
sensitive call graphs where each node is the abstraction of a
method as it is invoked in a specific context.

All these improvements in precision come with a signifi-
cant performance cost, which has been partially alleviated by
a long series of significant enhancement to the original algo-
rithm [6, 7, 18, 21]. Still, flow-insensitive, context-sensitive
analyses still fail to scale to programs larger than a few hun-
dred thousands lines of code.

An alternate, less explored, path to better performance
is parallelization. The first parallel implementation of an
inclusion-based pointer analysis was presented by Méndez-
Lojo, Mathew, and Pingali [15]. They express the constraint
solving problem as a graph rewrite problem and integrate
the offline stage and the Hybrid Cycle Detection technique
proposed by Hardekopf and Lin [9]. The solution relies on a
precomputed fixed call graph and is context-insensitive.They
implemented their system using Galois [17] and achieved a
speedup varying between 1x and 3x when compared to an
optimized sequential implementation.

We propose an alternate approach to parallelization that
takes advantage of the affinity between graph rewriting and
actor systems. We express the constraint graph as a graph
of actors, with both pointers and instances (memory loca-
tions) represented as actors, and set inclusion and derefer-
encing edges represented by the ”knows“ relations between
actors. Pointer dereferencing is solved by a two-step mes-
saging scheme propagating instance actor addresses from

1 2012/12/1

(variable) a, b, c ∈ V
(field) f ∈ F

(method identifier) m,n ∈M
(class identifier) k ∈ K

program ::= program | class; program
class ::= k′ extends k { methods } | k { methods }

methods ::= m {s} | methods ;m {s}
s ::= a = new k | a = b

| a = b.f | a.f = b

| a = b0.m(b1, b2, ...)

| s; s

Figure 1: Language syntax

the dereferenced pointer to the receiving one. The context-
sensitive call graph is computed on-the-fly in parallel with
the constraint solving.

We implemented the algorithm as a drop-in replacement
of WALA’s (T.J. Watson Libraries for Analysis) [2] inter-
nal sequential pointer analysis. Thus, it allows for all the
flexibility present in the original implementation, i.e., n-
CFA, n-object sensitivity [16], field-sensitivity, configurable
pointer and instance abstractions, etc. The implementation is
in Scala and relies on the Akka actor framework [1].

This paper makes the following contributions:

• an actor-model algorithm for computing flow-insensitive,
context-sensitive pointer information with on-the-fly call
graph refinement. To the best of our knowledge, it is
the first actor-model approach to pointer analysis, and
the first parallel approach that is both field and context
sensitive.

• a reasonably efficient and highly configurable implemen-
tation available as a drop-in replacement for the pointer
analysis in WALA, a widely used analysis framework

• a preliminary performance evaluation

2. Background
In this section we first present how constraints are gener-
ated in an inclusion-based pointer analysis with on-the-fly
call graph construction. For presentation purposes, we use
the simple language shown in Figure 1 with its intuitive se-
mantics. Still, our implementation does handle the full Java
language. The program starts from a predefined object and
method.

In an inclusion-based pointer analysis, the instructions in
the program generate a set-constraint graph with base, sim-

(variable) a, b, c ∈ V
(pointer) Γ(a) ∈ P = 2O

(ordered set of pointers) lx ∈ List[P]

(statement) s ∈ S
(object) o ∈ O

(object selector) o : C× S→ O
(field id) f ∈ F

(field of an object) f : O× F→ P
(method identifier) m,n ∈M

(class identifier) k ∈ K
(context) C ∈ C

(context selector) call : C×O×M→ C
(instructions for a call) instrFor : C→ ”methods“

(start environment for a call) start : C→ (V→ P)

(formal parameter) paramΓ : C→ List[P]

(formal return) returnΓ : C→ P
(local variable environment) Γ ∈ C× V→ P

ΓC ∈ {C} × V→ P

(subset) la ⊆ lb ≡ ∀i = 0...length(la).

la(i) ⊆ lb(i)

Figure 2: Domains

ple, and complex constraints [9?]. Method calls generate
interprocedural constraints which our analysis handles in a
context-sensitive manner using a variation of the lam con-
structor [8, 22] (Figure 3).

The graph’s nodes represent pointers and are points-to
sets, i.e. sets of abstract objects. The edges are different types
of set constraint relations between the pointers. Each vari-
able in the program has an associated pointer and an instan-
tiated object belongs to the points-to set to which it is as-
signed (base constraint). Assignment between two pointers
generates a simple constraint: the set of the righthand-side
pointer is a subset of the lefthand-side pointer – hence the
name of this particular pointer analysis.

Reading or writing a field generates a complex constraint.
When reading field, a subset relation is added between the
pointer representing the field of each object referenced by
the read pointer and the assigned pointer; similarly for writ-
ing a field. This means that complex constraints can only be
solved after propagating objects through simple constraints
and they, in turn, generate new simple constraints.

Method calls generate interprocedural constraints which
add inclusion relations between the actual and formal param-
eters and between method formal return pointers and the as-

2 2012/12/1

C,ΓC B s : Γ′,K

(base) C,ΓC B a = new k : ΓC [a→ {o(C, ”new k“)}], ∅

(simple) C,ΓC B a = b : ΓC , {ΓC(a) ⊆ ΓC(b)}

(complex) C,ΓC B a = b.f : ΓC , {∀o ∈ ΓC(b) ΓC(f(o)) ⊆ ΓC(a)}
C,ΓC B a.f = b : ΓC , {∀o ∈ ΓC(a) ΓC(a) ⊆ ΓC(f(o))}

(interprocedural)

o ∈ ΓC(b0) C ′ = call(C, o,m) C ′, start(C ′) B instrFor(C ′) : Γ′,K

bf = param(C ′) rf = return(C ′)

C,ΓC B a = b0.m(b1, ...) : Γ′ ∪ ΓC ,K ∪ {b ⊆ bf} ∪ {rf ⊆ Γ(a)}

(other)
C,Γ B s1 : Γ′,K1 C,Γ B s2 : Γ′′,K2

C,Γ B s1; s2 : Γ′ ∪ Γ′′,K1 ∪K2

Figure 3: Effects

signed pointers. Contexts are understood in the pointer anal-
ysis sense, e.g., whether to clone a method on application is
determined by its calling context. We abstract away context
selection details in order to allow any kind of calling context
sensitivity.

3. Actor-model algorithm
In this section we explain how the constraint generation and
constraint solving can be modeled as an actor system. There
are two main sources of parallelism that can be exploited:

1. Constraint solving, which has been explored by Méndez-
Lojo et al [15]. We give an alternate, actor-model solu-
tion.

2. Call graph construction and constraint generation, which
is, to the best of our knowledge, novel in both goals and
approach.

The system is comprised of the following types of actors
(symbol in parenthesis):

• pointer (circle)
• object (square)
• call graph node (pentagon)
• a singleton context selector (octagon)

3.1 Constraint generation
Figure 4 illustrates the constraint generation process. A call
graph node represents the evaluation of a method in a partic-
ular execution context. The call graph node actor interprets
the methods’ instructions by creating new actors and sending
them messages about their constraints.

An object instantiation generates a points-to (p) relation,
i.e. base constraint, between a pointer actor and a newly
created abstract object instance actor. An assignment be-
tween two pointers generates a subset (s) relation, i.e. a sim-
ple constraint, between the righthand-side and the lefthand-
side operands. A field read generates a read-field relation,
i.e. a type of complex constraint, from the dereferenced ob-
ject (righthand-side) to the receiving pointer (lefthand-side);
similarly for a field write.

In this stage, a method call only informs the actual pa-
rameters that they are part of a particular method call in this
node. Why this helps and how the actual invocation is real-
ized is discussed in detail in Section 3.3.

3.2 Constraint solving
We solve the set constraint problem by computing a dynamic
transitive closure over the constraint graph using actors.
Figure 5 illustrates the process that is triggered when a
pointer actor b gains a points-to relation to an object o. For
each subset-of constraint, b propagates the new points-to
constraint to the superset actor, a. When b is the source of
a read-field constraint, i.e. a field is read from the pointer, it
notifies o that its field needs to be a subset of the assigned
pointer, a. When b is the source of a write-field constraint,
i.e. a field is written through the pointer, it notifies o which,
in turn, lets a know the identity and address of its field, f .
Making objects first-class citizens increases the number of
messages but it also increases the available parallelism in the
system, while also conforming to the actor model restriction
of having only immutable shared data.

3 2012/12/1

call graph

p: points-to
s: subset-of
r: read-field
w: write-field
param: actual-parameter

p
ar

am
(s

,x
)

p
ar

am
(n

,s
,x

)

p
ar

am
(s

,x
)

a = b a = b.f

s

b

a

s(a)

r("f")

b

a

r("f",a)

w("f")

b

a

w("f",a)

n n n

a = new k

p

a

k

p(k)

n

a = b0.m(b1,b2,...)

n

bx

b.f = a
message

pre-existing relation

generated relation

call graph node

poitner object

CG

create target actor if absent

a

Figure 4: Constraint generation.

s

p

p
b

o

p(o)

p(o)
r("f")

p

a

b op(o)

r("f", a)

s(a)

s
a

subset-of read-field

"f" r("f")

p

a

b op(o)

w("f", a)

s(f)

s

"f"

f

write-field

Figure 5: Constraint solving

s(m:ay)

param(s,y,m:ay)

param(s,y) n n:ax +p(o)
p(s)

CG

param(n,s,x,o)

m

n.ay

m:ay

s

param(m:ay)
l-p(y)

s(n:ay)
return(s,m:ay)

param(s,y)
n n:ax +p(o)

p(s)

CG

param(n,s,x,o)

m

n.ay

m:ay

s

return(m:ay)
l-ret(y)

Figure 6: On-the-fly call graph construction. Adding subset constraints from actual to formal parameters (left). Adding
constraints from formal return to the assigned variable (right).

4 2012/12/1

3.3 On-the-fly call graph construction
A context sensitive pointer analysis that compute the call
graph on the fly clones the target method for each distinct
discovered context, as illustrated in Figure 6. Each clone in-
terprets all instructions in the method independently, allow-
ing a great amount of parallelism.

What constitutes a distinct context can be configured by
specifying a call method (see Fig. 2). This call method takes
as arguments the current context, the receiver object, and the
called method. The context distinctiveness is a global prop-
erty so parallelizing this process involves either performing
redundant computation or having a single decision actor. We
choose the latter route by creating a specialized actor, the
”CS“ (context selector) actor, that has the sole purpose of
identifying and recording unique contexts.

Knowing the pointer to a method’s actual parameters is
not enough for determining its context. The context is di-
rectly dependent on the receiver object, both for determin-
ing the target of dynamic dispatch and for object-sensitive
analyses [16]. But the receiver abstract object (or objects)
may only be available after constraint solving. We solved
this problem by not trying to determine the target method
and context when encountering a method call, but delay it
to the pointer the required information is available. Thus, on
interpreting a method call, the call graph node actor only no-
tifies the receiver pointer that it is part of a particular method
invocation in this particular node. Then, when the pointer
discovers a new pointer object, it notifies the call graph ac-
tor. The call graph actor then determines whether the new
object generates a new distinct context and, if so, spawns a
new call graph node. Also, it sends the caller call graph node
the pointers for the formal parameters and return pointers of
the callee.

4. Evaluation
The primary purpose of the evaluation is to determine how
fast and scalable our approach is. We measure the runtime
of our implementation when analyzing a set of nine Java
applications. We then analyze the same applications using
WALA[2] , a state of the art, highly optimized pointer anal-
ysis. Finally, we compare and discuss the results.

We implemented our analysis in Scala using the Akka
actor framework. We evaluate using a machine with 4 Intel
Xeon E7-4860 processors and 132GB of RAM. Each Intel
Xeon E7-4860 has 10 cores and hyper-threading, thus the
machine totals 40 cores with 80 physical threads.

We evaluate on nine Java applications from the DaCapo
9.12 benchmark suite [5]. The applications, shown in Table
11, range from 1k to 300k source lines of code. For each
application, we run the pointer analysis with varying levels
of precision, between 0-CFA and 2-CFA.

1 description from [5]

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Threads

Sp
ee

du
p

BH
Coref

Coref-1cfa
jUnit

luSearch
luSearch-1cfa

WEKA

Figure 7: Scalability of our original prototype

Problem size Better precision increases the problem size
but the magnitude of this increase is not easily predictable as
it is highly dependent on the shape of the call graph. E.g., if
a method is used in 100 places in a program and we increase
the precision from 0-CFA to 1-CFA, there will be 99 new
call graph nodes, each also adding more nodes to the heap
graph. If the same method appears only once, the precision
increase will not cause an increase in the problem size. So,
the potential increase in problem size is exponential but it
is not easily predictable. In practice, it is usually under one
order of magnitude increase for each precision step (see the
CG nodes column in Table 2).

Results Table 2 shows WALA’s runtime along with APA’s
runtime when using only one thread (seq), and using the
optimal number of threads (best parallel).

Figure 8 shows, for each project under varying precision,
the speedup obtained when varying the number of threads
made available to our algorithm. We limited the runtime
to 10 minutes so the graph is missing some values due to
timeouts. In particular, only avrora finished for 2-CFA within
the allocated time. Additionally, tradebeans did not finish
for 1-CFA when using more than 32 threads, and fop only
finished for 1-CFA when using 8 and 16 threads so we could
not compute a speedup value.

Performance Unfortunately, the results of the best version
of our algorithm are below expectations both in terms of
speed and scalability. We were initially excited about our al-
gorithm as an early prototype implementation showed good
scalability. Figure 7 shows the results of a preliminary eval-
uation of an early version of our algorithm. While 2 − 6×

5 2012/12/1

Project Description
avrora avrora simulates a number of programs run on a grid of AVR microcontrollers

pmd analyzes a set of Java classes for a range of source code problems
sunflow renders a set of images using ray tracing
luindex Uses lucene to indexes a set of documents

tradebeans runs the daytrader benchmark with an in memory h2 as the underlying database
h2 executes a number of transactions against a model of a banking application

fop takes an XSL-FO file, parses it and formats it, generating a PDF file.
tomcat runs a set of queries against a Tomcat server retrieving and verifying the resulting webpages

lusearch Uses lucene to do a text search of keywords over a corpus of data

Table 1: Evaluation suite.

WALA APA (our) APA (our) best parallel
Project Precision # CG nodes t(s) 1-thread t(s) total t(s) seq t(s) # threads
avrora 0-CFA 1399 4 11 10 1 8

1-CFA 4358 5 11 11 2 1
2-CFA 8149 7 12 11 2 4

pmd 0-CFA 6277 24 55 33 6 4
1-CFA 37290 50 407 234 77 8

sunflow 0-CFA 3667 6 17 12 3 4
1-CFA 14430 13 61 29 4 4

luindex 0-CFA 3452 9 18 17 3 2
1-CFA 17146 14 78 35 6 8

tradebeans 0-CFA 1072 3 11 5 1 4
1-CFA 2938 4 11 6 2 4

h2 0-CFA 2093 5 11 11 2 1
1-CFA 8952 11 48 21 3 8

fop 0-CFA 6192 29 325 210 64 8
tomcat 0-CFA 4734 14 40 25 4 8

1-CFA 25889 22 132 65 19 8
lusearch 0-CFA 3588 8 17 11 2 4

1-CFA 18161 14 71 33 6 8

Table 2: Results. The number of call graph nodes is as reported by our tool. There is up to 10% difference between our tool and
WALA in the number of discovered call graph nodes. The difference is due to subtle differences in the implementation, e.g.
the handling of library methods. The fifth column shows the runtime of our algorithm when run on a single thread. The sixth
column shows the runtime of our algorithm with the optimal number of threads. The seventh column shows the time spent by
our algorithm in a sequential section. # threads is the minimum number of threads required for the best parallel time result.

speedup on 12 cores might not seem like much, it is very
good in the context of pointer analysis, which is a hard case
of irregular parallelism[17], as the best competing algorithm
scales up to 3× [15]. Still, our implementation was more
than one order of magnitude slower than WALA so the initial
results were not conclusive and we need to improve speed.

5. Discussion
Set implementation The most computationally intensive
parts of a pointer analysis are the set difference and set union
operations in constraint solving. Our initial, naive imple-
mentation used hash sets. After experimenting with alter-
native set implementations, we found sorted word-aligned

compressed bitmaps[13] to be the best performing. The use
of integer arrays requires a central repository that assigns in-
dexes to objects but the extra communication is not very ex-
pensive. Using compressed bitmaps decreased the runtime
of our algorithm by 2− 10×.

WALA uses a highly-efficient bitmap implementation
that employs a shared repository of canonical sets. We ex-
perimented with using WALA’s bitmaps with synchronized
shared repository accesses and found that, despite high lock
contention, the performance was close to using the lock-free
word-aligned compressed bitmaps. We believe that, aside
from lack of communication, the highly efficient shared-

6 2012/12/1

memory bitmap implementation is the reason WALA has
better performance than our tool.

Improving improving set performance does make our al-
gorithm faster but, as the relative cost of the sequential sec-
tion is increased, it also makes the algorithm less scalable,
as Figure 8 shows.

Available parallelism The seventh column in Table 2
shows the time spent in the sequential part of our algorithm.
Most of this time is spent gathering the results from the actor
system into the main thread. The sequential work is between
5 and 20 percent of the total work.

As the computation is irregular, it is hard to measure the
available parallelism during the parallel computation. As a
proxy, we profiled the analysis’ CPU usage. The analysis
tends to fully use all the threads we make available while in
the parallel section. The thread utilization only drops during
garbage collection and at the very end of the algorithm,
while the actor system is shutting down. This shutting down
period takes at least 5 second so it is responsible for the poor
scalability of the analysis on small problems.

The 5 to 20 percent sequential section, combined with
the apparently very good available parallelism in the parallel
section, should make the algorithm fairly scalable. Still, the
speedup we observe is much less than what Amdahl’s law
predicts. We believe this is due to poorly scalable communi-
cation.

Communication Actors communicate by exchanging mes-
sages and Akka has a very performant implementation. In
one experiment, the Akka team shows how it scales to 20
million messages per second with 128 actors on an 48 core
AMD Opteron [3].

Still, the number of messages used by our algorithm, i.e.
several millions for a medium-size problem, does take its
toll. By profiling, we found that the communication cost is
roughly between one quarter and one half of the overall com-
putation. The estimation is rough because precise profiling
of Java programs is still problematic.

We attempted to reduce the cost of communication by
bundling messages between actors. When an actor needs to
send several messages to another actor as part of the same
task, we bundle them together and unpack them on the other
side. This improved performance but not significantly.

Context switching We varied the number of threads be-
tween 1 and 256. As the evaluation machine has 4 proces-
sors, each with 10 hardware cores with hyper-threading, it
is interesting to observe how context switching and cache
line invalidation affects performance. Figure 8 highlights the
thread values 10 (all hardware cores on one processor), 20
(all hardware threads on one processor), 40 (all hardware
cores), and 80 (all hardware threads). While we haven’t eval-
uated for these particular values, we can observe how run-
time evolves between 8, 16, 32, and 64 threads.

We observe that hardware architecture does have a major
impact on scalability. For most benchmarks, the best results
are obtained when using 8 or 16 threads, and adding more
threads makes the performance degrade significantly. This is
most likely due to the higher cost of communicating between
different processors. This also suggests that the algorithm
would not distribute well.

6. Conclusion
We propose a novel, actor-based algorithm for pointer analy-
sis. The algorithm shows some level of scalability, up to 2.3x
when using 8 threads, and is fairly fast, but it fails to beat
the highly optimized WALA implementation. Our scalabil-
ity result is in line with other work in this area [15]. Mendez
et al.’s [15] obtained up to 3× speedup versus their paral-
lel implementation when using one thread, and up to 2×
speedup versus their own implementation of a state-of-the-
art sequential algorithm.

While our parallel implementation is not better than a
highly-optimized sequential one at this point, the techniques
we propose could be useful in developing a better paral-
lel algorithm. Also, improvements in hardware, e.g. trans-
actional synchronization extensions, and in the Akka frame-
work might tip the scale in favor of our algorithm.

References
[1] Akka actor framework. URL http://akka.io/.

[2] Wala documentation. URL http://wala.sourceforge.

net/.

[3] 2 2012. URL http://letitcrash.com/post/

17607272336/scalability-of-fork-join-pool.

[4] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, 1994.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN confer-
ence on Object-Oriented Programing, Systems, Languages,
and Applications, pages 169–190, New York, NY, USA, Oct.
2006. ACM Press. doi: http://doi.acm.org/10.1145/1167473.
1167488.

[6] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial
online cycle elimination in inclusion constraint graphs. In
Proceedings of the ACM SIGPLAN 1998 conference on Pro-
gramming language design and implementation, PLDI ’98,
pages 85–96, New York, NY, USA, 1998. ACM. ISBN 0-
89791-987-4. doi: 10.1145/277650.277667. URL http:

//doi.acm.org/10.1145/277650.277667.

[7] M. Fähndrich, J. Rehof, and M. Das. Scalable context-
sensitive flow analysis using instantiation constraints. In Pro-
ceedings of the ACM SIGPLAN 2000 conference on Pro-

7 2012/12/1

http://akka.io/
http://wala.sourceforge.net/
http://wala.sourceforge.net/
http://letitcrash.com/post/17607272336/scalability-of-fork-join-pool
http://letitcrash.com/post/17607272336/scalability-of-fork-join-pool
http://doi.acm.org/10.1145/277650.277667
http://doi.acm.org/10.1145/277650.277667

20 21 22 23 24 25 26 27 28

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10 20 40 80

1

2

Number of threads

Sp
ee

du
p

avrora 0-CFA
avrora 1-CFA
avrora 2-CFA
pmd 0-CFA
pmd 1-CFA

sunflow 0-CFA
sunflow 1-CFA
luindex 0-CFA
luindex 1-CFA

tradebeans 0-CFA
tradebeans 1-CFA

h2 0-CFA
h2 1-CFA
fop 0-CFA

tomcat 0-CFA
tomcat 1-CFA

lusearch 0-CFA
lusearch 1-CFA

Figure 8: Results

8 2012/12/1

gramming language design and implementation, PLDI ’00,
pages 253–263, New York, NY, USA, 2000. ACM. ISBN
1-58113-199-2. doi: 10.1145/349299.349332. URL http:

//doi.acm.org/10.1145/349299.349332.

[8] J. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus
monomorphic flow-insensitive points-to analysis for c. Static
Analysis, pages 157–171, 2000.

[9] B. Hardekopf and C. Lin. The ant and the grasshopper:
fast and accurate pointer analysis for millions of lines of
code. In Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation, PLDI
’07, pages 290–299, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-633-2. doi: 10.1145/1250734.1250767. URL
http://doi.acm.org/10.1145/1250734.1250767.

[10] M. Hind. Pointer analysis: haven’t we solved this problem
yet? In PASTE, PASTE ’01, pages 54–61, New York, NY,
USA, 2001. ACM. ISBN 1-58113-413-4. doi: http://doi.acm.
org/10.1145/379605.379665. URL http://doi.acm.org/

10.1145/379605.379665.

[11] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interproce-
dural pointer alias analysis. ACM Trans. Program. Lang.
Syst., 21(4):848–894, July 1999. ISSN 0164-0925. doi:
10.1145/325478.325519. URL http://doi.acm.org/10.

1145/325478.325519.

[12] W. Landi and B. G. Ryder. Pointer-induced aliasing: a prob-
lem taxonomy. In Proceedings of the 18th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
POPL ’91, pages 93–103, New York, NY, USA, 1991. ACM.
ISBN 0-89791-419-8. doi: 10.1145/99583.99599. URL
http://doi.acm.org/10.1145/99583.99599.

[13] D. Lemire, O. Kaser, and K. Aouiche. Sorting improves word-
aligned bitmap indexes. Data & Knowledge Engineering, 69
(1):3–28, 2010.

[14] O. Lhoták and K.-C. A. Chung. Points-to analysis with ef-
ficient strong updates. In Proceedings of the 38th annual
ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’11, pages 3–16, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0490-0. doi:
http://doi.acm.org/10.1145/1926385.1926389. URL http:

//doi.acm.org/10.1145/1926385.1926389.

[15] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel
inclusion-based points-to analysis. In OOPSLA, OOPSLA
’10, pages 428–443, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0203-6. doi: http://doi.acm.org/10.1145/
1869459.1869495. URL http://doi.acm.org/10.1145/

1869459.1869495.

[16] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for java. ACM Trans.
Softw. Eng. Methodol., 14:1–41, January 2005. ISSN 1049-
331X. doi: http://doi.acm.org/10.1145/1044834.1044835.
URL http://doi.acm.org/10.1145/1044834.1044835.

[17] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of par-
allelism in algorithms. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’11, pages 12–25, New York, NY,

USA, 2011. ACM. ISBN 978-1-4503-0663-8. doi: 10.1145/
1993498.1993501. URL http://doi.acm.org/10.1145/

1993498.1993501.

[18] A. Rountev and S. Chandra. Off-line variable substitu-
tion for scaling points-to analysis. In Proceedings of the
ACM SIGPLAN 2000 conference on Programming language
design and implementation, PLDI ’00, pages 47–56, New
York, NY, USA, 2000. ACM. ISBN 1-58113-199-2. doi:
10.1145/349299.349310. URL http://doi.acm.org/10.

1145/349299.349310.

[19] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis, chapter 7, pages 189–234. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[20] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’96, pages
32–41, New York, NY, USA, 1996. ACM. ISBN 0-89791-
769-3. doi: 10.1145/237721.237727. URL http://doi.

acm.org/10.1145/237721.237727.

[21] Z. Su, M. Fähndrich, and A. Aiken. Projection merging: re-
ducing redundancies in inclusion constraint graphs. In Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’00, pages 81–
95, New York, NY, USA, 2000. ACM. ISBN 1-58113-125-9.
doi: 10.1145/325694.325706. URL http://doi.acm.org/

10.1145/325694.325706.

[22] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for c programs. In Proceedings of the
ACM SIGPLAN 1995 conference on Programming language
design and implementation, PLDI ’95, pages 1–12, New
York, NY, USA, 1995. ACM. ISBN 0-89791-697-2. doi:
10.1145/207110.207111. URL http://doi.acm.org/10.

1145/207110.207111.

9 2012/12/1

http://doi.acm.org/10.1145/349299.349332
http://doi.acm.org/10.1145/349299.349332
http://doi.acm.org/10.1145/1250734.1250767
http://doi.acm.org/10.1145/379605.379665
http://doi.acm.org/10.1145/379605.379665
http://doi.acm.org/10.1145/325478.325519
http://doi.acm.org/10.1145/325478.325519
http://doi.acm.org/10.1145/99583.99599
http://doi.acm.org/10.1145/1926385.1926389
http://doi.acm.org/10.1145/1926385.1926389
http://doi.acm.org/10.1145/1869459.1869495
http://doi.acm.org/10.1145/1869459.1869495
http://doi.acm.org/10.1145/1044834.1044835
http://doi.acm.org/10.1145/1993498.1993501
http://doi.acm.org/10.1145/1993498.1993501
http://doi.acm.org/10.1145/349299.349310
http://doi.acm.org/10.1145/349299.349310
http://doi.acm.org/10.1145/237721.237727
http://doi.acm.org/10.1145/237721.237727
http://doi.acm.org/10.1145/325694.325706
http://doi.acm.org/10.1145/325694.325706
http://doi.acm.org/10.1145/207110.207111
http://doi.acm.org/10.1145/207110.207111

	Introduction
	Background
	Actor-model algorithm
	Constraint generation
	Constraint solving
	On-the-fly call graph construction

	Evaluation
	Discussion
	Conclusion

