
in Proceedings of the 2013 International Symposium on Software Testing and Analysis (ISSTA ’13)
received ACM SIGSOFT Distinguished Paper Award

Practical Static Race Detection for Java Parallel Loops

Cosmin Radoi
University of Illinois, USA

cos@illinois.edu

Danny Dig
Oregon State University, USA

digd@eecs.oregonstate.edu

ABSTRACT
Despite significant progress in recent years, the important
problem of static race detection remains open. Previous
techniques took a general approach and looked for races by
analyzing the effects induced by low-level concurrency con-
structs (e.g., java.lang.Thread). But constructs and libraries
for expressing parallelism at a higher level (e.g., fork-join,
futures, parallel loops) are becoming available in all ma-
jor programming languages. We claim that specializing an
analysis to take advantage of the extra semantic informa-
tion provided by the use of these constructs and libraries
improves precision and scalability.

We present IteRace, a set of techniques that are special-
ized to use the intrinsic thread, safety, and data-flow struc-
ture of collections and of the new loop-parallelism mecha-
nism to be introduced in Java 8. Our evaluation shows that
IteRace is fast and precise enough to be practical. It scales
to programs of hundreds of thousands of lines of code and it
reports few race warnings, thus avoiding a common pitfall of
static analyses. The tool revealed six bugs in real-world ap-
plications. We reported four of them, one had already been
fixed, and three were new and the developers confirmed and
fixed them.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication — Reliability, Validation; D.2.5 [Software Engi-
neering]: Testing and Debugging — Debugging aids; F.3.2
[Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages — Program analysis

General Terms
Reliability, Verification

Keywords
Static race detection, Java, synchronization, static analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15–20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

1. INTRODUCTION
The recent prevalence of multi-core processors has increased

the use of shared-memory parallel programming. Loop par-
allelism is often the first choice when attempting to speed up
programs [48]. The major programming languages have par-
allel constructs or libraries that provide extensive support
for loop parallelism, e.g., Parallel.For in .NET TPL [4],
.parallel() in the upcoming Java 8 collections [5], paral-

lel_for in C++ TBB [6]. Still, programs with parallel loops
are subject to the major plague in shared-memory concur-
rent programming: data races. A data race can occur when
one thread executing a loop iteration writes a memory lo-
cation and another thread executing another loop iteration
accesses the same memory location with no ordering con-
straint between the two accesses.

Data races are hard to find due to non-deterministic thread
scheduling. This has led to a large body of research on race
detection. Static race detection techniques [8, 13, 34, 35, 37–
39, 43–45, 51, 63] use an underlying static model of the pro-
gram’s real execution. In theory, this allows a single analy-
sis pass to find all the races that could occur in all possible
program executions. Static race detectors rarely miss races
but are faced with the opposite problem: despite continu-
ous improvements, they still report impractically-many false
warnings. For example, we applied JChord [44], a state-
of-the-art static race detector, on compute-intensive loops
from seven Java applications. In many cases, JChord re-
ported thousands of racing accesses per analyzed loop. This
may be one of the reasons why static race detectors have
not been embraced in practice. Indeed, most of the recent
work on data-race detection has focused on dynamic detec-
tors [9,21,22,25,30,39–41,45–47,54,56,57,59,61], which typi-
cally have much fewer false warnings, but have high overhead
and miss races on program paths that are not executed.

Can static race detection for Java applications be practi-
cal? Previous approaches embraced generality : they tried
to work equally well for any kind of parallel construct by
analyzing thread-level concurrency, did not differentiate be-
tween application and library code, and did not use the doc-
umented behavior of libraries. This came at the expense of
practicality : they were either not scalable or reported a high
number of false warnings. We hypothesize that a specialized
analysis can significantly improve precision while maintaing
scalability. In this paper, we validate this hypothesis for the
case of Java parallel loops.

Our goals are to prune false warnings and reduce as much
as possible the total number of warnings the programmer has
to inspect, while not sacrificing safety, i.e., not removing any

(a) Runtime (b) General (c) IteRace

tm

t1 tnhs

h1 hn

tm

tm

t↵ t�hs

h↵ h�

tm

tm

tahs

ha

tm

Figure 1: Modeling a parallel loop. Circles are threads,
squares heap regions. Double line denotes abstraction.

true races. We present three specialization techniques that
contribute to these goals: (i) 2-Threads – make the analy-
sis aware of the threading and data-flow structure of loop-
parallel operations, (ii) Bubble-up – report races in applica-
tion code, not in libraries, and (iii) Filtering – filter the race
warnings based on a thread-safety model of library classes.
We implemented these techniques in a tool, IteRace, and
empirically validated how well they work individually, and
in tandem.

2-Threads. A parallel loop is an SPMD-style (Single Pro-
gram, Multiple Data) computation. Its iterations are iden-
tical tasks processing different input elements. The tasks
are executed by a pool of threads. Without loss of general-
ity, we can consider that each task/iteration is computed by
a different thread. The main thread forks multiple identi-
cal threads at the beginning of the loop and waits for these
threads to join at the end of the loop (Fig.1.a). Each of the
threads/iterations can access a part of the heap. In the fig-
ure, hs is the set of objects shared between parallel threads.
hi is the set of objects specific to thread ti, i.e., input or new
objects only accessed by thread ti.

A general race detector models the identical forked threads
by only one abstract thread [44,51] (see Fig.1.b). This makes
the thread-specific object sets h1...hn indistinguishable from
each other, as they are modeled by a unique set ha. Then,
escape analysis or other techniques are used to refine the
results and reduce the number of false warnings.

In contrast, our specialized technique models the identical
forked threads by two distinct abstract threads, tα and tβ
(Fig. 1.c). This closely matches the definition of a data race
as it disambiguates the two threads involved in the defini-
tion. As the objects specific to each of the two threads are
modeled by the separate sets hα and hβ , the number of ab-
stract objects that are shared is significantly reduced. Our
modeling subsumes the effect of thread escape analysis but
is more precise. Like with thread-escape, an abstract object
that does not escape a thread is considered safe. However,
when an object does escape, our analysis does not implicitly
consider it unsafe. IteRace only reports a race warning
when an object reaches the other abstract thread and there
is a concurrent access.

Bubble-up. All Java programs of real value are built on top
of libraries - even the “Hello World” program uses several
JDK classes. General race detectors do not keep track of
whether the race appears in library code or in application
code. However, reporting a race in library code has little

practical value for application developers as such a race is
rarely due to a buggy library - it is likely due to concurrent
misuse of the library.

IteRace bubbles-up the race warnings that occur in li-
brary code by tracing back the race warnings to the ap-
plication level and presenting a summarized result to the
developer. The application-level race warnings can be seen
as misuse warnings on shared, thread-unsafe library objects.

Filtering . To improve performance, many library classes
employ advanced synchronization techniques (e.g., memory
fences, spin-locks, compare-and-swap, immutability, com-
plex locking protocols). These classes pose challenges for
any static race detection and their analysis is mostly lim-
ited to model checking and verification approaches. As our
analysis is aimed at application code, not library classes, we
assume that libraries are correctly implemented. Thus, we
use a lightweight model of their documented behavior to de-
termine correctness. In addition, following Michael Hind’s
advice on the importance of client-specific pointer analy-
sis [36], we use this model to specialize the context sensitiv-
ity to increase precision and lower runtime.

This paper makes the following contributions:

• Race detection approach. We propose three tech-
niques aimed at making static race detection for loop-
parallel code practical. Our approach (i) specializes in
lambda-style parallel loops [5], (ii) traces, summarizes,
and reports the race warnings in application code, and
(iii) is aware of and uses known thread-safety proper-
ties of library classes.

• Tool. We implemented these techniques in a tool,
IteRace, that analyzes Java programs. We released
it as open-source: http://github.com/cos/IteRace

• Evaluation. We evaluated our approach by using
IteRace to analyze seven open-source projects. For
context, we also analyzed the same projects with a
state-of-the-art, but general, static race detection tool,
JChord [44]. The results show that our specialized ap-
proach is sufficiently fast and precise to be practical.
It runs it at most a few minutes and reports very few
warnings for many of the case studies.
We reported four of the bugs found by IteRace to
the projects’ developers. One had already been known
and fixed. The other three were new, and they were
confirmed and fixed by the developers.
Finally, we designed and carried out a set of experi-
ments to measure the effect of each specialization tech-
nique alone and in tandem with other techniques.

2. MOTIVATING EXAMPLE
To illustrate our analysis, we use a simple N-body simu-

lation implementation, shown partially in Fig. 2; for now,
only consider the code, not the extra graphical aid. An N-
body simulation computes how a system of particles evolves
when subjected to gravitational forces. The parallel imple-
mentation uses the loop parallelism library enhancements to
be introduced in Java 8 [3]. In Java 8, clients can call the
parallel() method on any Collection to get a ”parallel view”
of it. They can then execute loop-parallel operations (e.g.
parallel map) by passing lambda expressions to this view.

In this example, a HashSet of particles is created by the
lambda expression at lines 11-15. Then, the simulation pro-

http://github.com/cos/IteRace

class NBodySimulation {
 class Particle {
 double x, y, vX, vY; // position, velocity
 double fX, fY, m; // force, mass
 }
 Particle centerOfMass = new Particle();
 protected Object lock;
 ArrayList<Particle> history = new ArrayList<Particle>();

 void compute() {
Set<Particle> particles = (new Range(0,1000)).map(i -> {

1
2
3
4
5
6
7
8
9

10
11

 Particle p = new Particle();
 readParticle(p);
 return p;

12
13
14

 Particle p = new Particle();
 readParticle(p);
 return p;

12
13
14

}).into(new HashSet());
for (int i = 0; i < noSteps; i++) {

 updateForce();
 particles.parallel().forEach(p -> {

15
16
17
18

 p.vX += p.fX / p.m * dT;
 p.vY += p.fY / p.m * dT;
 p.x += p.vX * dT;
 p.y += p.vY * dT;

 Particle oldCOM = this.centerOfMass;
 this.centerOfMass = new Particle();

 synchronized (this.lock) {
 centerOfMass.m = oldCOM.m + p.m;
 }
 centerOfMass.x = (oldCOM.x * ...
 centerOfMass.y = (oldCOM.y * ...

 System.out.println(centerOfMass);
 history.add(centerOfMass);
}); ...

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 p.vX += p.fX / p.m * dT;
 p.vY += p.fY / p.m * dT;
 p.x += p.vX * dT;
 p.y += p.vY * dT;

 Particle oldCOM = this.centerOfMass;
 this.centerOfMass = new Particle();

 synchronized (this.lock) {
 centerOfMass.m = oldCOM.m + p.m;
 }
 centerOfMass.x = (oldCOM.x * ...
 centerOfMass.y = (oldCOM.y * ...

 System.out.println(centerOfMass);
 history.add(centerOfMass);
}); ...

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

tm

t0↵

tm

t0�

t00↵ t00�

×

Figure 2: Visual representation of how our analysis sees a simple N-body simulation implementation. Each
block of code is labeled with the abstract thread that executes it, e.g., t′α. The arrows show points-to relations from variables
to allocation sites, e.g., variable p at line 21 in thread t′′α may point to the abstract object instantiated on line 12 in thread t′α.
Only relevant points-to relations are shown. The dashed crossed arrow represents an abstract points-to relation that would
not appear in any real execution, so it is correctly missing in our model.

ceeds iteratively in time steps (line 16), at each step the
particles being moved according to their mass and current
positions and velocities. An N-body simulation step is typ-
ically comprised of two stages. The first stage updates the
forces according to the mass and current position of all par-
ticles. This stage is computed by the method updateForce,
which we choose not to detail here as it is verbose and does
not add value to the presentation. In the second stage, the
parallel operator defined at lines 19-33 updates each parti-
cle’s velocity (lines 19-20) and position (lines 21-22).

For the purpose of showing how different races are handled
by our analysis, we have also included a computation of the
centerOfMass of all particles (lines 24-31). Also, lines 33-34
print and then log the movement of the center of mass in
the ArrayList history.

The center of mass is stored in an instance field of NBodySim-
ulation (line 6). The computation proceeds as follows. Line
24 stores the current value of the centerOfMass field in a local
variable oldCOM. Then, the centerOfMass field is updated to a
new Particle object (line 25) which is populated with values
based on the oldCOM and the current particle, p (lines 27-31).
As this computation is part of the parallel operator, there
are multiple threads executing this code concurrently. The
NBodySimulation object is shared between these threads, so
there are multiple races that can occur on the centerOfMass

field and Particle object referred by it. The centerOfMass

field write on line 25 can race with another thread executing
the instruction on line 25 or any of the read field instructions
at lines 24, 28, 30, or 31. Also, lines 28, 30 and 31 write and
read fields of the Particle referenced by centerOfMass. This
is the object initialized at line 6 but it is not thread-local,
so multiple threads could access the same Particle. The ac-
cesses to fields x and y (lines 30 and 31) are not synchronized
so they are racing. The accesses at line 28 are protected by
a unique lock shared between all threads, so they are safe.

Next, line 33 prints the current centerOfMass. Although
this action accesses shared resources, i.e. the standard out-
put stream, it is safe due to synchronization within the
PrintStream class.

Finally, line 34 logs the current center of mass into an
ArrayList pointed to by the history field of the NBodySimu-

lation object. As the history collection is shared and the
ArrayList class is not thread-safe, there will be races on the
inner state of ArrayList.

The next section explains how IteRace correctly identi-
fies all the races described above. The Filtering phase elim-
inates the races on the standard output while the Bubble-
up transforms the race warnings in the ArrayList to a sin-
gle warning on line 34. Finally, Synchronized determines
that a race cannot occur at line 28 because the accesses are

CG - CFGs Heap Graph

potential races

data-flow analyses

locksets

Deep-Synchronized

bubble out of JDK

reported races

traverse and match

pointer analysis

CG - CFGs

Filtering

Synchronized

2-Threads, Bubble-up, Filtering

Figure 3: Analysis overview. Ovals represent different
sub-analyses. Rectangles represent intermediate and final
data structures. The bottom half-oval represents the spe-
cialized context sensitivity mechanism.

protected by the shared lock. Furthermore, the accesses
on fields vX, vY, x, and y at lines 19-22 are not races and
IteRace does not report them as such. In this case, an
analysis lacking 2-Threads and relying on escape analysis
would report false warnings.

3. RACE DETECTION
We now explain how IteRace represents programs, how

it detects races, and how it avoids false warnings.
Figure 3 presents a high level overview of IteRace. WALA

[7] provides the underlying Andersen-style static pointer anal-
ysis. The call graph is computed on-the-fly along with the
heap model, based on context sensitivity. Each of our tech-
niques specializes the context sensitivity, as detailed in sec-
tions 3.1, 3.3, and 3.2. The analysis is flow-insensitive, with
the exception of the limited amount of flow sensitivity pro-
vided by static single assignment. Objects are abstracted
by allocation sites and fields are distinguished. Method
calls have a bounded context sensitivity that is specialized
by each technique. On completion, the pointer analysis
produces a static call graph representing the execution, a
control-flow graph for each method, and a heap graph.

Next, IteRace computes the set of potential races (pairs
of accesses that would race if not synchronized) by traversing
the program representation and matching instructions using
alias information from the heap graph (Sec. 3.1).

Also, for each statement in the program, IteRace com-
putes the lock set that protects it. This is achieved by an
IFDS analysis [53].

Then, the Filtering phase (Sec. 3.2) eliminates races based
on a priori thread-safety information for classes.

Accesses protected by the same lock are race-free. Thus,
the Deep-Synchronized phase (Sec. 3.4) filters out the poten-
tial races on such accesses, yielding the set of actual races.

Then, IteRace “bubbles up” the races that occur in li-
brary code and reports them in application code, on the
library-method calls that led to them (Sec. 3.3).

Finally, Synchronized , a stage similar to Deep-Synchronized ,
further prunes the bubbled-up race warnings.

c.forEach(op)
op(eα) [tα]

op(eβ) [tβ]

c.map(op)

eα = op(eα) [tα]

eβ = op(eβ) [tβ]

return c [tm]

c.reduce(base, op)

x1 = op(eα, base) [tα]

x2 = op(x1, eβ) [tβ]

return x2 [tm]

Figure 4: Model of collection operations. The abstract
thread executing each operation is bracketed to its right.

3.1 2-Threads Program Model
The main thread of the program is modeled by an ab-

stract thread tm (lines 1-8 and 16-17 in our example). As
outlined in Fig. 1, the concrete threads executing each loop
are modeled by two abstract threads, tα and tβ . In our
example (Fig. 2), 〈t′α, t′β〉 and 〈t′′α, t′′β〉 model the threads
executing the parallel loops at line 11 and 18, respectively.
We will further use the notation t : x to refer the instruc-
tions at line number x as executed in the context of abstract
thread t; e.g., t′α : 12 refers the instruction at line number
12 executed by t′α.

The analysis matches loops operating on the same collec-
tion, e.g., 〈t′α, t′β〉 and 〈t′′α, t′′β〉, using may-alias. If the col-
lection references do not alias in a concrete execution, the
analysis may introduce spurious warnings, but it is still safe.
Additionally, the technique dynamically adds levels of object
sensitivity [42] in order to precisely track the collections of
interest through the program.

The analysis maintains a special modeling for each collec-
tion of interest. The elements of a collection are modeled by
two abstract fields, eα and eβ . Fig. 4 shows how each of the
abstract threads, tα and tβ , processes one of the abstract
fields, eα respectively eβ . This modeling allows our tech-
nique to distinguish between elements processed by different
threads. For example, in the case of the forEach operation,
different elements of the collection, eα and eβ , are processed
by different threads, tα respective tβ . Also, it sees that the
result of processing eα only updates eα, not both eα and eβ ,
and vice-versa. While our implementation does not cover
all the new Java 8 collection operations [5], it can be easily
adapted to do so once the specification stabilizes.

The above modeling is used for both the parallel and
the sequential loop operations over the collection of inter-
est. This allows IteRace to understand the relationships
between the elements of the collection as it is processed by
different loops. In Figure 2, both the collection initialization
at lines 11-15 and the processing at lines 18-35 are modeled.
Thus, IteRace sees that the element p in t′′α is the same
with p in t′α but different from p from t′β .

A potential race is a pair of accesses to the same field of
the same object, such that one is a write access executed by
tα and the other is either a read or a write executed by tβ .
In our example, there are several potential races on the cen-

terOfMass field of the NBodySimulation object. t′′α : 25 writes
to the field centerOfMass while t′′β : 24 and t′′β : 25 read and
respectively write the same field of the same object. There-
fore, according to the definition above, the pairs of accesses

〈t′′α : 25, t′′β : 24〉 and 〈t′′α : 25, t′′β : 25〉, on the centerOfMass

field of the NBodySimulation object are potentially racing.
Accesses at lines 28, 30, and 31 in thread t′′β are also racing
with t′′α : 25 because they read centerOfMass.

The more interesting cases are the potential races on fields
of the Particle references by centerOfMass. We will look at
the write access at t′′α : 31 and the read/write accesses at
t′′β : 31. centerOfMass at t′′α : 31 may point to the objects
instantiated at either of tm : 6 (the pointer analysis is flow-
insensitive), t′′β : 25 or t′′α : 25. centerOfMass and oldCOM at
t′′β : 31 may point to the same three objects. For the latter of
the objects, i.e., the one instantiated at t′′α : 25, there are two
potential races on its y field, one for the write-write accesses
(both writes on centerOfMass), and one for the write-read
accesses (write on centerOfMass, read on oldCOM). Similarly,
there are two potential races for each of the objects instan-
tiated at tm : 6 and t′′β : 25. It is not possible for a race to
occur on the object instantiated at tm : 6 but IteRace is
flow insensitive so it does not take into consideration that
the field update at line 25 happens before the potential race
on line 31. Still, the resulting false warnings are not par-
ticularly distracting to the programmer as they are usually
accompanied by warnings of real races on the same variable,
as in our example. Also, section 4.2 shows how the way we
report races makes such cases less of a nuisance.

We now look at accesses that are not potential races be-
cause of our particular representation of collection opera-
tions. i.e., two abstract threads for each operation with an
underlying modeling of the collection elements. Let us con-
sider the pair of non-racing write accesses to p.x 〈t′′α : 21, t′′β :
21〉. They are not racing as each refers to a different unique
element of the collection.

In order to determine if they are racing, an analysis needs
to determine whether the p variables from each of the threads
may alias. If the parallel loop iteration would be modeled by
only one abstract thread, there would be only one abstract
representation for the p variable so it would obviously may-
alias. Then, thread escape analysis could be employed to cut
down the number of accesses that can be involved in a race.
In this case, escape analysis would not solve the problem
as the object referenced by the variable is escaping through
particles. Then, other more expensive analyses could be
further employed to refine the results, for example [43].

In contrast, our approach is simpler yet very effective,
making thread-escape analysis unnecessary. As IteRace
models each parallel loop by two threads, it does not need to
consider races that might occur between instructions of the
same abstract thread. Also, as IteRace models the collec-
tion to distinguish between the elements processed by each
of the two abstract threads, it achieves collection-element
sensitivity. For example, the object initialized at t′α : 12 is
identified as the same with the object accessed at t′′α : 21,
but different from the object initialized at t′β : 12 (crossed
arrow). Similarly, the object initialized at t′β : 12 is the same
with the object accessed at line t′′β : 21 and different from
the one at t′α : 12. Hence, p at t′′α : 21 and p at t′′β : 21 may
not alias, therefore 〈t′′α : 21, t′′β : 21〉 cannot race.

Additionally, as all objects are labeled with their instan-
tiation thread, IteRace uses this information to alleviate
the effect of the pointer analysis not being meet-over-all-
valid-paths [58]. The code listing below shows a very simple
example of how a shared object can “piggyback” on a non-
shared object’s abstract path through the program and then

introduce a false race. Without any extra context sensitiv-
ity, both calls to returnMyself are represented by the same
call graph node. Thus, particle points to both the objects
referenced by sharedParticle and the new, locally initial-
ized Particle. As the pointer analysis does not filter invalid
paths, p will also point to both the new object, as it should,
and the shared object. Now, any write access, like the one
to the x field below, will introduce false warnings.

public void re turnMyse l f (Pa r t i c l e p a r t i c l e) {
return p a r t i c l e ;

} . . .
r e turnMyse l f (s ha r edPa r t i c l e) ;
P a r t i c l e p = returnMyse l f (new Pa r t i c l e ()) ;
p . x = 7 ;

To alleviate this effect, out tool makes calls within parallel
iterations context sensitive on the sharing nature of their
arguments. Each call has a property shared in its context,
with shared(argNo) meaning that the argNoth argument has
not been instantiated in the current iteration. For the above
example, shared(1) is true for the call on sharedParticle but
false for the call on the new Particle. Thus, two distinct call
graph nodes are created for returnMyself. In effect, p only
points to the new object, and no false races are introduced.

3.2 Filtering Using Thread-Safety Model
IteRace uses a simple a priori thread-safety model of the

classes to drastically reduce the number of warnings intro-
duced by the intricate thread-safety mechanisms in libraries.
To this purpose, we both adjust the context sensitivity and
add one warning filtering phase.

Filtering uses the following a priori information about
methods. A method:

• is threadSafe if any invocation of itself cannot be in-
volved in races. All methods of thread-safe classes are
at least threadSafe.

• is threadSafeOnClosure if it is threadSafe and any other
invocation reachable from its invocation cannot be in-
volved in races. This class of methods includes, but
is not limited to, methods of immutable classes. As
expected, all threadSafeOnClosure methods are also
threadSafe. The converse is not true, as it is explained
at the end of this subsection.

• instantiatesOnlySafeObjects if any object instantiated
inside the method, but not necessarily in other meth-
ods called by it, is thread-safe.

• circulatesUnsafeObjects if the method may either re-
turn or receive a possibly non-thread-safe object as a
parameter.

Using this information, the context of a callee is generated
from the context of the caller by adding a ThreadSafeOnClo-
sure sticky flag when the callee is threadSafeOnClosure.

Additionally, Interesting and Uninteresting sticky flags
are used to indicate that the downstream call graph should
always, respectively never, be expanded according to other
rules (i.e. the ones introduced by 2-Threads and Bubble-up).

The flags are sticky in the sense that they will be propa-
gated downstream unless explicitly removed.

The Filtering stage uses the above model and the gener-
ated flags to filter out accesses that cannot be involved in
races. An access in the abstract invocation na of method
ma, on object o instantiated in a method mo, cannot be
involved in a race if any of the following conditions is met:

• threadSafe(ma)

• instantiatesOnlySafeObjects(mo) – this is mostly use-
ful for anonymous classes as they cannot be modeled
with threadSafe

• the context of na is ThreadSafeOnClosure

It is possible to have methods that are threadSafe but
not threadSafeOnClosure. Let us go back to the example in
Fig.2. Line 34 contains a call to PrintStream on the method
println(Object) listed below:

public void p r i n t l n (Object x) {
St r ing s = St r ing . valueOf (x) ;
synchronized (this) {

pr in t (s) ;
newLine () ;

}
}

This method is threadSafe as a race cannot occur within
it but it is not threadSafeOnClosure because of the call to
String.valueOf. This method verifies whether the passed
object is a String and calls toString on it otherwise. The
problem is that we know nothing about the thread-safety
of toString on arbitrary objects. Even if String.valueOf(x)

were within the synchronized section, it wouldn’t have helped,
as another access holding a different lock or none at all could
still race with it. The method also calls print(String) and
newLine(). These methods are threadSafeOnClosure as they
are also synchronized internally and do not operate on any
object supplied from outside.

3.3 Bubble-up to Application Level
Next, IteRace bubbles up the races that occurred in li-

braries to application level. Reporting a race means report-
ing a racing pair of accesses. IteRace reports each of the
accesses occurring in library code as a set of method invoca-
tions in application code that lead to the in-library access.

For each race in library code, we have a pair of sets of
application-level accesses leading to it. The sets are com-
puted by traversing the call graph backwards, from the data
race to the first call graph node outside of library code.

Finally, IteRace groups warnings on each application-
level receiver objects. The intuition is that the application
programmer does not care which library inner object the
accesses occurred on. She only cares which accesses to said
application-level object generate races. For line 34 in our ex-
ample (Fig. 2), the programmer doesn’t care that the races
occurred on fields elementData and size inside the ArrayList

object. She only cares about the pair of accesses on history.
The programmer can tell IteRace which classes to consider
as library classes, yielding reports at various depth levels.

The Bubble-up technique also adds a layer of object sen-
sitivity between the application and library to improve pre-
cision. This layer is also sensitive to the presence of the
Interesting flag described in Section 3.2.

3.4 Synchronized Accesses
We determine locksets and filter races in a similar manner

to Naik et al. [44]. Locks are represented by abstract objects.
A lock protects an access if, for each each path through the
program reaching the access, the last lock operation on the
said lock is an acquisition. A pair of accesses is considered
safe if the intersection of their locksets is not empty.

The differentiating aspect is that we apply the algorithm
twice, once on an initial set of races, as in Naik’s work, and

once after the Bubble-up. Our evaluation revealed that ap-
plying the algorithm after Bubble-up is slightly faster and
more effective. The reason lies in the library objects’ ab-
straction imprecision. A single call graph node of a library
method abstracts multiple runtime invocations. When invo-
cations that are protected by application-level synchroniza-
tion are conflated with unprotected invocations, and locksets
are checked at library level, all accesses are considered un-
safe. If the accesses are checked at application-level, the tool
has better chances of distinguishing safe accesses.

3.5 Discussion
IteRace is subject to the typical sources of unsoundness

for static analysis, i.e., it has only limited handling of re-
flection and native method calls, to the extent provided by
WALA.

The Synchronized phase unsafely uses may-alias informa-
tion to approximate must-alias lock relations. The analysis
can easily be adapted to use a must-alias analysis once a
scalable must-alias analysis is available. Also, our evalu-
ation shows that the Deep-Synchronized and Synchronized
phases have much less warning-reduction effect than the oth-
ers. The programmer can choose to deactivate these phases
to get safer results.

The Filtering technique relies on the programmer spec-
ifying which methods and classes are threadSafe, thread-
SafeOnClosure, instantiatesOnlySafeObjects, or circulate-
sUnsafeObjects. An incorrect specification may lead the
analysis to miss true races. We have already specified the
thread-safety characteristics of a large number of JDK classes
and methods by using the javadocs as a guide. A program-
mer using IteRace may need to extend this, especially if
she uses other libraries containing thread-safe classes.

IteRace is designed to analyze the lambda-style loop-
parallel parts of the program and cannot reason about con-
currency that appears by spawning other threads besides
the ones used by the parallel loops. In such cases, IteRace
warns the programmer about the potentially unsafe thread
spawn. Extending our tool to handle other concurrency con-
structs should be straightforward. The Bubble-up and Fil-
tering techniques could be applied directly and would be
beneficial. 2-Threads would not be applicable directly but
its underlying idea could prove useful in designing similar
techniques for other thread structures.

4. EVALUATION
We evaluate our tool by answering the following questions:

1. Is IteRace practical? As the main culprit of static
race detection is the high number of warnings, we gauge
practicality by the number of warnings the program-
mer has to inspect. Precision is also important so
we also check how many of the warnings reported by
IteRace lead to true races. For context, we also com-
pare our tool with a state of the art, but general, data
race detection tool for Java, JChord [44].

2. What is the impact of each specialization tech-
nique? For each specialization technique we analyze
how much it reduces the number of warnings and how
it affects runtime. We measure each specialization
technique as applied individually and in tandem with
other techniques.

Table 1: Evaluation suite. Column 4 shows the number of methods analyzed by IteRace. The size of library code varies
as some applications use extra libraries besides JDK. The number of methods reflects methods reached by the race detector.

Project Description (parallel section) SLOC (app+lib) # Methods

MC Monte Carlo simulation (the separate deterministic computations) [16] 1441+220k 252
EM 3D electromagnetic wave propagation simulation (force update for nodes) [17] 181+220k 80

Coref NLP coreference finder (processing documents) [11] 41k+225k 927
Weka data mining software (generation of clusterers) [33] 301k+253k 1236

Lucene Lucene search benchmark (separate searches) [12] 48k+220k 2363
jUnit testing framework (jUnit’s own test suite) 15.6k+220k 508
Cilib computational intelligence library (simulation engine) 52.4k+454k 1957

4.1 Methodology
We evaluate our approach by using IteRace to analyze

the 7 open-source Java projects shown in Table 1. Then,
we use JChord to analyze the same projects under the same
conditions and compare the results. Finally, we measure the
impact of each of our specialization techniques.

Case studies. When building the evaluation suite, we first
looked for applications with parallel implementations that
used loop-parallelism. Unfortunately, the lack of a proper
loop parallelism library in JDK has discouraged program-
mers from parallelizing their programs. We have only found
three applications where programmers have used a form of
loop parallelism to improve the performance of their applica-
tion, i.e., Lucene, jUnit, and Cilib. Thus, we looked further
to applications that have sequential implementations but
where the underlying algorithm is inherently parallel and
included four more applications, i.e., MonteCarlo, EM3D,
Coref, and Weka.

The evaluation suite is heterogenous: it has applications
from different domains (benchmarks, NLP, data mining, com-
putational intelligence, testing) and of various sizes, from
hundreds of lines of code to hundreds of thousands. Table 1
shows a short description of each application and indicates
which part of it is parallel, the application’s size in lines of
code, and the number of methods analyzed by our tool.

As Java 8 has not been released yet, analysis tools, in-
cluding WALA, do not have support for its new features, in
particular for lambda expressions. In Java, anything that
can be expressed through lambda expressions can also be
expressed, more verbosely, using anonymous classes. For
evaluation purposes, we created a collection-like class based
on ParallelArray [2] that exposes part of the new collec-
tion methods proposed for Java 8, but implemented with
anonymous classes. Once WALA handles lambda expres-
sions, adapting the implementation will be trivial.

For already-parallel applications, we manually adapted
the implementation to use our collection. We changed the
original implementations as little as possible, i.e., we neither
performed any additional refactoring, nor fixed any races.

For the sequential applications, we parallelized each of
them by performing the following steps:

1. run a profiler and identify the computationally inten-
sive loop and the data structure it is iterating.

2. refactor the data structure into our collection.

3. refactor all loops over the data structure to use op-
erators instead of for. The computationally intensive
loop is refactored to run in parallel, while the rest are
transformed to anonymous-class-operator form.

IteRace. We first analyze each application using IteRace
with all the specialization techniques activated. We inspect
each generated race warning in order to determine its root
fault. Each race warning can be seen as a possible error.
Typically, one fault can lead to multiple errors. In our case,
one fault may lead to multiple warnings. If we cannot find
a fault for a particular warning, we deem it as false.

At first, we only considered JDK as library code and, de-
spite our techniques reducing the number of warnings by
orders of magnitude, we still found ourselves needing to an-
alyze a few thousands of warnings. Many of the warnings
were still over ten levels deep in the call graph, counting
from the parallel loop. Figuring out whether the racing ac-
cesses are actually reachable during an actual execution, let
alone whether truly shared objects can reach them, proved
very challenging.

The solution came from a top-down approach based on our
Bubble-up technique: We first aggressively mark application
classes as library code in order to make the analysis report
warnings much closer to the loop body. This drastically
reduces the number of warnings but also hides the reason the
analysis considers some pairs of accesses as leading to races.
Then, we gradually remove the library markings until the
source for the race reveals itself. In our experiments, it took
up to 10 analysis reruns in order to find the set of library
markings that best describe the fault. For each application,
it took us between a few minutes and a few hours to reach
this optimal level. We are not experts in the applications we
analyzed, so we expect this effort to be lower for developers
more familiar with the code. The results presented in the
paper reflect this optimal balance.

We also analyze all applications with selectively deactivat-
ing various techniques to reveal their effect upon the anal-
ysis as a whole. In addition to the three main techniques
(2-Threads, Filtering , and Bubble-up), we also measure the
effect of filtering warnings that come from correctly synchro-
nized code, both at deep and at application level (see Sec-
tion 3.4). Thus, there are five distinct parts of the analysis
that can be turned on and off, hence 32 possible configu-
rations. We run the analysis in all 32 configurations over
all the applications. For each run, we measure runtime and
number of warnings.

The machine running the experiments is a quad-core Intel
Core i7 at 2.6 GHz (3720QM) with 16 GB of RAM. The
JVM is allocated 4 GB of RAM. We implemented the race-
detection techniques in Scala and we use the static analysis
framework WALA, which is implemented in Java.

JChord . We also analyze all projects using JChord. We
asked Mayur Naik, JChord’s lead developer, for advice on

Table 2: Overall results. “#” is the number of warnings.
“real” is how many of the warnings are real races. Multiple
warnings may be caused by the same program “fault”. A
warning may be false or benign, thus mapping to no fault.
For mc, there is a real but benign race.

JChord IteRace (our tool)
warnings warnings

project t (s) # real t (s) # real faults

em3d 20 15 0 3.7 0 0 0
mc 22 44 1 5.4 1 1 0

junit 24 123 0 9.5 0 0 0
coref 85 19.5k - 154.8 34 30 2

lucene 95 53.4k - 171.9 119 2 2
weka 156 19.6k - 432.2 1 1 1
cilib 271 21.4k - 112.4 1735 2 1

how to best configure the tool. Accordingly, we configure
JChord such that:

• it also reports races between instructions belonging to
the same thread. By default, JChord only reports
races between distinct abstract threads. As it mod-
els the threads executing a parallel loop as one ab-
stract thread, the default behavior would ignore all
races in parallel loops. Additionally, we have imple-
mented a small tool that filters JChord’s reports to
remove races between the abstract thread representing
the parallel loop and main thread. Such warning are
obviously false and are easy to filter out, so we consid-
ered it is fair towards JChord to disregard them.

• it ignores races in constructor code. This reduces sig-
nificantly the number of false positives reported by
JChord but adds a source of unsoundness. While
rare, constructors can have races, e.g., a constructor
reads an object’s field while another thread writes it.
IteRace does not ignore races in constructors.

• it does not use conditional must not alias analysis [43]
as it is not currently available.

Additionally, we set JChord to ignore classes that IteRace
models as threadSafeOnClosure and do not circulatesUn-
safeObjects. This increases the tool’s precision without ham-
pering safety.

JChord gives a very high number of warnings with their
accesses deep in the call graph. We attempted to also inspect
whether some of the warnings are true but it proved very
difficult. As it was originally the case with IteRace, it
is very hard to determine if a race reported deep in the
application or library code is true. In the end, we could
only complete the inspection for three of the case studies.

4.2 Results
We first present our experience analyzing the evaluation

suite applications using IteRace. Afterwards, we dig deeper
and examine how effective is each of the techniques individ-
ually and in combination with others.

Table 2 shows an overview of the results. For context, the
first three columns show JChord’s performance analyzing
the evaluation suite applications. JChord’s runtime is rea-
sonable but the reported number of warnings is overwhelm-
ing for five out of the seven case studies. For em3d and junit

the number of warnings is low enough to be inspected but
all of the warnings are false.

A static race detection tool’s runtime and results are heav-
ily dependent on the underlying pointer analysis. Since
JChord and IteRace have different underlying pointer anal-
yses and abstraction choices, their results may vary in terms
of number of warnings. Still, JChord’s results can give an
idea about the effectiveness of a tool not implementing our
techniques. JChord’s results are similar to that of our tool
with only the Deep-Synchronized technique activated.

Let us look at the issue of missed races. IteRace’s under-
lying approach is very similar to JChord’s. Synchronized is
the application-level version of the same may-alias lockset-
based filtering used in JChord. 2-Threads and Bubble-up
are inherently safe and Filtering is safe when used correctly
(see Section 3.5). Thus, it is highly unlikely that IteRace
will miss any true races JChord finds.

The last four columns show IteRace’s performance over
the same applications. As expected, the runtime varies sig-
nificantly with the size of the application, but it is acceptable
even for the very large ones. For two applications, our tool
doesn’t report any races, correctly deeming them safe. For
the other applications, after Bubble-up, the number of warn-
ings is low and the reported accesses are close enough to the
parallel loop body to be relatively easy to understand.

4.2.1 Case Studies
em3d and junit are race free and IteRace correctly re-

ports no warnings for any of them. mc contains a benign
race where a static global is initialized with the same value
in every iteration. This is a true race but cannot be consid-
ered a fault. We have not accounted for this type of scenario
so our tool issues a warning. JChord found this race, also.

Coref is one of the applications that we parallelized our-
selves and we contributed back the parallel version. The
developers of the project told us that there is no interac-
tion between the iterations of the parallel loop. IteRace
reports 34 warnings out of which 30 are true. Most of the
warnings are rooted in the sharing introduced via two static
fields used for caching purposes. The developers confirmed
the faults and fixed the application by making the static
fields thread-local.

For lucene, IteRace reports many warnings out of which
two are true. First, there is an unsynchronized access to a
custom, thread-unsafe, String interning class. Second, there
is an unsynchronized access to a factory method of the Date-

Format class. The access leads to an atomicity violation in
the JDK LocalServiceProviderPool class. We reported the
problem to the JDK developers. The problem is mostly be-
nign assuming correct implementation of other classes. Still,
it had already been fixed in the latest JDK release.

For weka, the analysis hits the right target with great
precision. While running the analysis at a deeper level
also yields false positives, after Bubble-up, the analysis only
makes one warning report, a correct one: all loop iterations
share the same thread-unsafe custom collection object.

For cilib, we aim the analysis at various parts of its ex-
tensive algorithm library. For some algorithms, the analysis
is very precise, reporting only two warnings, both true. We
reported them to cilib developers and they confirmed and
fixed the fault [1].

For other cilib algorithms, IteRace proved less precise,
raising many false warnings along with the aforementioned

Table 3: Runtime under various configurations.
(seconds) t - 2-Threads, f - Filtering, b - Bubble-up, s - Syn-
chronized. Upper case denotes an activated feature.

em3d mc junit coref lucene weka cilib avg.

tfbs 3.5 4.0 5.7 22.3 16.9 45.4 22.3 11.8
tfbS 4.0 5.4 7.6 88.3 87.6 191.4 62.1 28.5
tfBs 3.6 5.1 6.8 470.7 469.3 302.8 45.5 45.2
tfBS 3.9 6.0 8.1 723.3 582.0 429.5 75.8 59.6

tFbs 3.7 4.3 6.7 35.8 29.3 91.9 26.4 16.0
tFbS 3.6 4.8 8.2 62.5 62.8 147.2 47.2 23.4
tFBs 3.7 4.4 6.8 35.5 34.5 91.7 27.6 16.7
tFBS 3.9 5.0 8.3 60.6 63.0 147.5 47.0 23.8

Tfbs 3.7 4.2 6.2 62.3 36.9 75.8 38.5 18.2
TfbS 3.7 5.5 7.9 271.8 175.9 492.3 145.6 47.9
TfBs 3.7 4.3 6.3 86.0 68.3 172.9 51.9 24.6
TfBS 3.2 5.4 8.1 247.9 183.6 541.2 148.9 47.3

TFbs 3.8 4.3 7.1 76.6 70.0 221.9 54.1 25.9
TFbS 3.7 5.5 9.5 145.6 159.4 427.8 113.3 41.8
TFBs 3.4 4.6 7.2 75.8 86.6 240.3 60.0 27.2
TFBS 3.7 5.4 9.5 154.8 171.9 432.2 112.4 42.5

true ones. We traced many of the false warnings to a source
of imprecision in WALA’s pointer analysis method call ab-
straction: WALA propagates all actual parameter objects to
the formal parameters of all target call graph nodes, regard-
less of object context sensitivity. This makes the technique
described at the end of Section 3.1 less effective when the
receiver points to both shared and non-shared objects.

4.2.2 Effect of each Specialization Technique
Tables 3 shows the runtime and Table 4 shows the number

of warnings reported by our analysis under 16 of the 32 pos-
sible configurations. We are not showing results for filtering
warnings based on deep synchronization due to its limited
impact (see the end of the section) and space constraints.
Each row shows the results for one configuration labeled by
an acronym where an upper/lower case denotes a technique
is activated/deactivated.

The best results, i.e., the lowest number of warnings, are
obtained when all techniques are activated (last row of Table
4). IteRace finishes the analysis in under two minutes for
all applications except WEKA.

Tables 5, 6, 7, and 8 highlight the effect of activating/deac-
tivating each technique. These tables are derived from Table
4. The value in each cell is the ratio between the number
of races on a certain configuration with the technique de-
activated and the number of races with the technique acti-
vated. For example, the value in cell “FBs”:“junit” in Table
5 is obtained from Table 4, column “junit”, by dividing the
cell “tFBs” by the cell “TFBs”. A higher ratio means the
activated technique filters out more warnings, which is an
improvement. ∞ denotes a situation where the number of
warnings is reduced to 0. 1.0 means no improvement. NaN
denotes a situation where the number of warnings was 0 with
the technique deactivated and it remains 0. A subunitary
value means that the number of warnings has increased.

Table 5 shows that 2-Threads (modeling each loop with
two distinct threads) significantly improves the results inde-
pendent of other techniques. Upon inspection we found that,
as expected, the filtered out warnings are on objects that are

Table 4: Number of warnings. (racing pairs of accesses)
t - 2-Threads, f - Filtering, b - Bubble-up, s - Synchronized.
Upper case denotes an activated feature.

em3d mc junit coref lucene weka cilib

tfbs 1 2541 2389 81K 151K 110K 71K
tfbS 1 2541 2351 81K 151K 103K 42K
tfBs 1 748 222 586K 246K 20K 11K
tfBS 1 748 203 586K 244K 20K 11K

tFbs 1 179 49 22K 37K 6675 9447
tFbS 1 179 24 22K 37K 6602 9442
tFBs 1 155 36 476 8312 1344 2771
tFBS 1 155 30 476 6425 1344 2762

Tfbs 0 53 87 22K 32K 38K 38K
TfbS 0 53 70 21K 30K 32K 18K
TfBs 0 3 3 36K 13K 10K 6293
TfBS 0 3 0 36K 12K 10K 6251

TFbs 0 1 17 427 14K 472 1795
TFbS 0 1 0 427 12K 463 1791
TFBs 0 1 3 34 2006 1 1741
TFBS 0 1 0 34 119 1 1735

Table 5: Effect of 2-Threads on the number of warn-
ings. (improvement ratio, see third paragraph of Sec. 4.2.2)

em3d mc junit coref lucene weka cilib

fbs ∞ 47.94 27.46 3.70 4.71 2.85 1.86
fbS ∞ 47.94 33.59 3.70 5.02 3.18 2.31
fBs ∞ 249.33 74.00 15.97 17.73 1.95 1.77
fBS ∞ 249.33 ∞ 15.97 20.35 1.95 1.77
Fbs ∞ 179.00 2.88 53.13 2.66 14.14 5.26
FbS ∞ 179.00 ∞ 53.12 2.94 14.26 5.27
FBs ∞ 155.00 12.00 14.00 4.14 1344.00 1.59
FBS ∞ 155.00 ∞ 14.00 53.99 1344.00 1.59

thread-local by being either created and not escaped from
the current iteration or unique to each element of the col-
lection. In the case of em3d, activating 2-Threads correctly
removed all warnings, independent of the other techniques.

Table 6 shows that Filtering has a powerful effect for all
larger applications. The filtered out warnings mostly involve
accesses to library classes, e.g., synchronized I/O, Java se-
curity, regex, and concurrent or synchronized collections.

Table 7 shows the effect of Bubble-up. Its main value
is not in reducing the number of warnings but in making
them more programmer friendly. As the technique maps
deep warnings into a application-level warnings, and, as it is
common for one library class to be used repeatedly through-
out the application, Bubble-up may inflate the number of
warnings. This effect is revealed by the sub-unitary values
in rows 1, 2, 4, 5, and 6. Still, when combined with Filtering
(rows 3, 4, 7, and 8) the negative effect is reversed and we
see improvement in most cases. This is because most extra
warnings came from correctly-synchronized library classes.

Table 8 shows that, surprisingly, the lockset-based static
filtering, i.e., Synchronized , does little to improve analysis
results for larger projects, even in the absence of Filtering .
Although not shown here due to space limitation, analyzing
synchronization at a deep level has an even weaker effect.

Table 6: Effect of Filtering on the number of warn-
ings. (improvement ratio, see third paragraph of Sec. 4.2.2)

em3d mc junit coref lucene weka cilib

tbs 1.00 14.20 48.76 3.59 4.05 16.63 7.59
tbS 1.00 14.20 97.96 3.59 4.08 15.62 4.45
tBs 1.00 4.83 6.17 1233.12 29.70 15.56 4.01
tBS 1.00 4.83 6.77 1233.12 38.13 15.56 4.01
Tbs NaN 53.00 5.12 51.56 2.28 82.42 21.47
TbS NaN 53.00 ∞ 51.47 2.38 70.10 10.17
TBs NaN 3.00 1.00 1081.03 6.94 10711.00 3.61
TBS NaN 3.00 NaN 1081.03 101.16 10711.00 3.60

Table 7: Effect of Bubble-up on the number of warn-
ings. (improvement ratio, see third paragraph of Sec. 4.2.2)

em3d mc junit coref lucene weka cilib

tfs 1.00 3.40 10.76 0.14 0.61 5.31 6.45
tfS 1.00 3.40 11.58 0.14 0.62 4.93 3.79
tFs 1.00 1.15 1.36 47.66 4.50 4.97 3.41
tFS 1.00 1.15 0.80 47.65 5.77 4.91 3.42
Tfs NaN 17.67 29.00 0.60 2.31 3.63 6.12
TfS NaN 17.67 ∞ 0.60 2.50 3.03 2.91
TFs NaN 1.00 5.67 12.56 7.02 472.00 1.03
TFS NaN 1.00 NaN 12.56 106.08 463.00 1.03

5. RELATED WORK
Dynamic analyses. Dynamic race detectors have been the
favored approach in the last decade. Their main advantage
over static approaches is the significantly lower number of
false warnings. This advantage is counterbalanced by dy-
namic analyses’ failure to catch races that are not “close” to
the analyzed execution and the high runtime cost of the more
precise tools. A common approach is to compute some form
of order relation, e.g. happens-before, over the events of an
observed execution trace and, based on these relations, infer
race conditions [9,21,22,25,41,54,57,60]. This approach can
miss many races so lockset-based race detectors have been
developed as an alternative that catches more races at the
expense of false positives [19, 46, 56, 61]. There are also hy-
brid approaches that combine both techniques [18,30,49,64].

Similarly, static race detectors vary between higher pre-
cision, lower scalability [35, 43] and lower precision, better
scalability [38, 44, 50, 51, 63]. Also, annotations can be used
to improve the performance of the analysis [8].

Static analyses for C and other languages. Several race
analyses have been proposed for C or variants [26, 31, 52].
Henzinger et al. [35] present a model checking approach that
is both path and flow sensitive, and models thread contexts.
Pratikakis et al. present Locksmith [50, 51], a type-based
analysis that computes context-senstitive correlations be-
tween lock and memory accesses. Relay [63] proposes a
slightly less precise but more scalable analysis that summa-
rizes the effects of functions using relative locksets. Although
they are now applied to C programs, both of these tech-
niques could be adapted to improve the precision of Java
analyses, including ours.

Static analyses for Java . Flanagan et al. [27] proposed
using type checking systems to find races. Boyapati et al.

Table 8: Effect of Synchronized on the number of race
warnings. (improvement ratio, similar to Table 5).

em3d mc junit coref lucene weka cilib

tfb 1.00 1.00 1.02 1.00 1.00 1.08 1.71
tfB 1.00 1.00 1.09 1.00 1.01 1.00 1.00
tFb 1.00 1.00 2.04 1.00 1.01 1.01 1.00
tFB 1.00 1.00 1.20 1.00 1.29 1.00 1.00
Tfb NaN 1.00 1.24 1.00 1.07 1.20 2.12
TfB NaN 1.00 ∞ 1.00 1.16 1.00 1.01
TFb NaN 1.00 ∞ 1.00 1.12 1.02 1.00
TFB NaN 1.00 ∞ 1.00 16.86 1.00 1.00

[14,15] introduced the concept of ownership to improve the
results. Type-based systems perform very well but they re-
quire a significant amount of annotation from the program-
mer. Different approaches have been proposed to automat-
ically infer the annotations [10,28,29,55].

Praun et al. [62] propose an Object Use Graph model that
statically approximates the happens-before relation between
accesses to a specific object.

Choi et al. [20] proposes a thread-sensitive but context-
insensitive race detector. They use the strongly connected
components of an inter-procedural thread-sensitive control
flow graph to compute must-alias relations between locks
and threads. Using this, they find a limited number of defi-
nite races. IteRace uses the idea of thread-sensitivity but
specializes the modeling of the parallel loops, significantly
increasing precision.

Naik et al. [44] builds an object-sensitive analysis that
uses thread-escape to lower the false positive rate. In a
subsequent article [43], they present a conditional must not
alias analysis for solving aliasing relationships between locks.

6. CONCLUSION
By specializing static data race detection, we can make

it practical. This paper presents three techniques, imple-
mented in a tool IteRace, that is specialized to the new
parallel features for collections that will be introduced in
Java 8. The restricted thread structure of parallel loops
combined with loop operations expressed as lambda expres-
sions allows for better precision in the heap modeling while
maintaining scalability.

Our evaluation shows that the tool implementing this ap-
proach is fast, does not hinder the programmer with many
warnings, and it finds new bugs that were confirmed and
fixed by the developers. Thus, IteRace can also be used in
scenarios with high interactivity, e.g., refactoring for paral-
lelism [23,24,32], that require fast and precise analyses.

7. ACKNOWLEDGMENTS
We thank Codruta Girlea, Stas Negara, Sandro Badame,

Francesco Sorrentino, Rajesh Karmani, Nicholas Chen, Semih
Okur, Samira Tasharofi, Milos Gligoric, Traian-Florin Şer-
bănuţă, Darko Marinov, and Vikram Adve for their feedback
on earlier drafts of this work. We also thank Mihai Codoban
and Caius Brindescu for their help in making an unbiased
evaluation. This research is partly funded through NSF
CCF-1213091 and CCF-1219027 grants, an Intel gift grant,
and the Illinois-Intel Parallelism Center at the University of
Illinois at Urbana-Champaign. The Center is sponsored by
the Intel Corporation.

8. REFERENCES
[1] CIlib bug. https://github.com/cilib/cilib/issues/111.

[2] Concurrency JSR-166 Interest Site - ParallelArray.
http://gee.cs.oswego.edu/dl/concurrency-interest/.

[3] JDK8. http://jdk8.java.net.

[4] Microsoft TPL. http://msdn.microsoft.com/en-
us/library/dd460717.aspx.

[5] State of the Lambda: Libraries Edition.
http://cr.openjdk.java.net/ briangoetz/lambda/-
sotc3.html.

[6] Threading Building Blocks.
http://threadingbuildingblocks.org/.

[7] WALA documentation. http://wala.sourceforge.net/.

[8] M. Abadi, C. Flanagan, and S. N. Freund. Types for
safe locking: Static race detection for java. TOPLAS,
28:207–255, March 2006.

[9] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B.
Netzer. Detecting data races on weak memory
systems. SIGARCH Comput. Archit. News,
19:234–243, April 1991.

[10] R. Agarwal and S. Stoller. Type inference for
parameterized race-free Java. In B. Steffen and
G. Levi, editors, VMCAI, volume 2937 of Lecture
Notes in Computer Science, pages 77–108. Springer
Berlin / Heidelberg, 2004.

[11] E. Bengtson and D. Roth. Understanding the value of
features for coreference resolution. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, pages 294–303. Association for
Computational Linguistics, 2008.

[12] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In
Proceedings of the 21st ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’06, pages 169–190, New York,
NY, USA, Oct. 2006. ACM Press.

[13] E. Bodden and K. Havelund. Racer: effective race
detection using AspectJ. In Proceedings of the 2008
international symposium on Software testing and
analysis, ISSTA ’08, pages 155–166, New York, NY,
USA, 2008. ACM.

[14] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: preventing data races and
deadlocks. In Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’02, pages
211–230, New York, NY, USA, 2002. ACM.

[15] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In Proceedings of
the 16th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’01, pages 56–69, New York,
NY, USA, 2001. ACM.

[16] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty,
and R. A. Davey. A benchmark suite for high
performance Java. In Java Grande, pages 81–88. ACM
Press, 1999.

[17] B. Cahoon and K. McKinley. Data flow analysis for
software prefetching linked data structures in Java. In
Parallel Architectures and Compilation Techniques,
2001. Proceedings. 2001 International Conference on,
pages 280 –291, 2001.

[18] F. Chen, T. F. Şerbănuţă, and G. Roşu. jPredictor: a
predictive runtime analysis tool for Java. In
Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 221–230, New
York, NY, USA, 2008. ACM.

[19] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and
implementation, PLDI ’02, pages 258–269, New York,
NY, USA, 2002. ACM.

[20] J.-D. Choi, A. Loginov, and V. Sarkar. Static datarace
analysis for multithreaded object-oriented programs.
Technical report, IBM Research Division, Thomas J.
Watson Research Centre, 2001.

[21] J.-D. Choi, B. P. Miller, and R. H. B. Netzer.
Techniques for debugging parallel programs with
flowback analysis. TOPLAS, 13:491–530, October
1991.

[22] M. Christiaens and K. De Bosschere. TRaDe, a
topological approach to on-the-fly race detection in
Java programs. In Proceedings of the 2001 Symposium
on JavaTM Virtual Machine Research and Technology
Symposium - Volume 1, JVM’01, pages 15–15,
Berkeley, CA, USA, 2001. USENIX Association.

[23] D. Dig, J. Marrero, and M. D. Ernst. Refactoring
sequential java code for concurrency via concurrent
libraries. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages
397–407, Washington, DC, USA, 2009. IEEE
Computer Society.

[24] D. Dig, M. Tarce, C. Radoi, M. Minea, and
R. Johnson. Relooper: refactoring for loop parallelism
in Java. In Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming
systems languages and applications, OOPSLA ’09,
pages 793–794, New York, NY, USA, 2009. ACM.

[25] A. Dinning and E. Schonberg. An empirical
comparison of monitoring algorithms for access
anomaly detection. SIGPLAN Not., 25:1–10, February
1990.

[26] D. Engler and K. Ashcraft. RacerX: effective, static
detection of race conditions and deadlocks. SIGOPS
Oper. Syst. Rev., 37:237–252, October 2003.

[27] C. Flanagan and S. N. Freund. Type-based race
detection for Java. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming language
design and implementation, PLDI ’00, pages 219–232,
New York, NY, USA, 2000. ACM.

[28] C. Flanagan and S. N. Freund. Detecting race
conditions in large programs. In Proceedings of the
2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering,
PASTE ’01, pages 90–96, New York, NY, USA, 2001.
ACM.

[29] C. Flanagan and S. N. Freund. Type inference against

races. Sci. Comput. Program., 64:140–165, January
2007.

[30] C. Flanagan and S. N. Freund. FastTrack: efficient
and precise dynamic race detection. In Proceedings of
the 2009 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’09, pages
121–133, New York, NY, USA, 2009. ACM.

[31] D. Grossman. Type-safe multithreading in cyclone. In
Proceedings of the 2003 ACM SIGPLAN international
workshop on Types in languages design and
implementation, TLDI ’03, pages 13–25, New York,
NY, USA, 2003. ACM.

[32] A. Gyori, D. Dig, L. Franklin, and J. Lahoda.
Crossing the gap from imperative to functional
programming through refactoring. In Proceedings of
the 9th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, ESEC/FSE ’13, 2013.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data
mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[34] R. L. Halpert, C. J. F. Pickett, and C. Verbrugge.
Component-based lock allocation. In Proceedings of
the 16th International Conference on Parallel
Architecture and Compilation Techniques, PACT ’07,
pages 353–364, Washington, DC, USA, 2007. IEEE
Computer Society.

[35] T. A. Henzinger, R. Jhala, and R. Majumdar. Race
checking by context inference. In Proceedings of the
ACM SIGPLAN 2004 conference on Programming
language design and implementation, PLDI ’04, pages
1–13, New York, NY, USA, 2004. ACM.

[36] M. Hind. Pointer analysis: haven’t we solved this
problem yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, PASTE ’01, pages
54–61, New York, NY, USA, 2001. ACM.

[37] R. Jhala and R. Majumdar. Interprocedural analysis
of asynchronous programs. SIGPLAN Not.,
42:339–350, January 2007.

[38] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static
data race detection for concurrent programs with
asynchronous calls. In Proceedings of the 7th joint
meeting of the European software engineering
conference and the ACM SIGSOFT symposium on
The foundations of software engineering on European
software engineering conference and foundations of
software engineering symposium, ESEC/FSE ’09,
pages 13–22, New York, NY, USA, 2009. ACM.

[39] P. Liang, O. Tripp, M. Naik, and M. Sagiv. A dynamic
evaluation of the precision of static heap abstractions.
In Proceedings of the ACM international conference on
Object oriented programming systems languages and
applications, OOPSLA ’10, pages 411–427, New York,
NY, USA, 2010. ACM.

[40] D. Marino, M. Musuvathi, and S. Narayanasamy.
LiteRace: effective sampling for lightweight data-race
detection. In Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and
implementation, PLDI ’09, pages 134–143, New York,

NY, USA, 2009. ACM.

[41] J. Mellor-Crummey. On-the-fly detection of data races
for programs with nested fork-join parallelism. In
Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, ICS ’91, pages 24–33, New York, NY,
USA, 1991. ACM.

[42] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to analysis
for Java. ACM Trans. Softw. Eng. Methodol., 14:1–41,
January 2005.

[43] M. Naik and A. Aiken. Conditional must not aliasing
for static race detection. In Proceedings of the 34th
annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’07,
pages 327–338, New York, NY, USA, 2007. ACM.

[44] M. Naik, A. Aiken, and J. Whaley. Effective static
race detection for Java. In Proceedings of the 2006
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’06, pages 308–319,
New York, NY, USA, 2006. ACM.

[45] M. Naik, P. Liang, and M. Sagiv. Static
Thread-Escape Analysis vis Dynamic Heap
Abstractions. from Naik’s website, 2010.

[46] H. Nishiyama. Detecting data races using dynamic
escape analysis based on read barrier. In VM, pages
10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[47] R. O’Callahan and J. Choi. Hybrid dynamic data race
detection. In Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel
programming, volume 38 of PPoPP ’03, pages
167–178. ACM, 2003.

[48] S. Okur and D. Dig. How do developers use parallel
libraries? In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of
Software Engineering, ESEC/FSE ’12, pages 54–65,
New York, NY, USA, 2012. ACM.

[49] E. Pozniansky and A. Schuster. MultiRace: efficient
on-the-fly data race detection in multithreaded C++
programs. Concurrency and Computation: Practice
and Experience, 19(3):327–340, 2007.

[50] P. Pratikakis, J. S. Foster, and M. Hicks.
LOCKSMITH: context-sensitive correlation analysis
for race detection. In Proceedings of the 2006 ACM
SIGPLAN conference on Programming language
design and implementation, PLDI ’06, pages 320–331,
New York, NY, USA, 2006. ACM.

[51] P. Pratikakis, J. S. Foster, and M. Hicks.
LOCKSMITH: Practical static race detection for C.
ACM Trans. Program. Lang. Syst., 33:3:1–3:55,
January 2011.

[52] S. Qadeer and D. Wu. Kiss: keep it simple and
sequential. In Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and
implementation, PLDI ’04, pages 14–24, New York,
NY, USA, 2004. ACM.

[53] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’95, pages 49–61, New
York, NY, USA, 1995. ACM.

[54] M. Ronsse and K. De Bosschere. RecPlay: a fully
integrated practical record/replay system. ACM
Trans. Comput. Syst., 17:133–152, May 1999.

[55] J. Rose, N. Swamy, and M. Hicks. Dynamic inference
of polymorphic lock types. Science of Computer
Programming, 58(3):366 – 383, 2005.

[56] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst.,
15:391–411, November 1997.

[57] D. Schonberg. On-the-fly detection of access
anomalies. SIGPLAN Not., 24:285–297, June 1989.

[58] M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. ACM Trans.
Program. Lang. Syst., 1981.

[59] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt,
W. Chen, and W. Zheng. RACEZ: a lightweight and
non-invasive race detection tool for production
applications. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages
401–410, New York, NY, USA, 2011. ACM.

[60] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and
C. Flanagan. Sound predictive race detection in
polynomial time. In Proceedings of the 39th annual

ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’12, pages 387–400,
New York, NY, USA, 2012. ACM.

[61] C. von Praun and T. R. Gross. Object race detection.
In Proceedings of the 16th ACM SIGPLAN conference
on Object-oriented programming, systems, languages,
and applications, OOPSLA ’01, pages 70–82, New
York, NY, USA, 2001. ACM.

[62] C. von Praun and T. R. Gross. Static conflict analysis
for multi-threaded object-oriented programs. In
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming language design and implementation,
PLDI ’03, pages 115–128, 2003.

[63] J. W. Voung, R. Jhala, and S. Lerner. RELAY: static
race detection on millions of lines of code. In
Proceedings of the the 6th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, ESEC-FSE ’07, pages 205–214,
New York, NY, USA, 2007. ACM.

[64] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack:
efficient detection of data race conditions via adaptive
tracking. SIGOPS Oper. Syst. Rev., 39:221–234,
October 2005.

	Introduction
	Motivating example
	Race detection
	2-Threads Program Model
	Filtering Using Thread-Safety Model
	Bubble-up to Application Level
	Synchronized Accesses
	Discussion

	Evaluation
	Methodology
	Results
	Case Studies
	Effect of each Specialization Technique

	Related work
	Conclusion
	Acknowledgments
	References

