Are Web Applications Ready for Parallelism?

Cosmin Radoi Stephan Herhut

University of Illinois, USA

cos@illinois.edu stephan@herhut.eu

Abstract

In recent years, web applications have become pervasive. Their
backbone is JavaScript, the only programming language supported
by all major web browsers. Most browsers run on desktop or mobile
devices with parallel hardware. However, JavaScript is by design
sequential, and current web applications make little use of hardware
parallelism. Are web applications ready to exploit parallel hardware?

We answer the question in two steps: First, we survey 174 web
developers about the potential and challenges of using parallelism.
Then, we study the performance and computation shape of a set of
web applications that are representative for the emerging web.

Our findings indicate that emerging web applications do have
latent data parallelism, and JavaScript developers’ programming
style is not a significant impediment to exploiting this parallelism.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent Programming; D.2.7 [Software engineering]:
Distribution, Maintenance, and Enhancement

Keywords javascript, web, survey, performance

1. Introduction

Parallel hardware has become a reality of modern computing and
its use is no longer confined to high performance applications and
super computing. Even mobile phones now regularly feature multi-
core CPUs and programmable GPUs. SIMD (Single Instruction,
Multiple Data) extensions add further to the mix of exploitable
hardware parallelism. Creating the best possible experience on any
device therefore requires tapping into parallel hardware’s potential
to increase performance, save energy, or even both.

Most traditional platforms and languages have developed tools
and language extensions to help developers adapt their code to run
on modern parallel hardware. Yet, HTMLS, an emerging web-based
application ecosystem that promises portability across devices and
form factors, and its implementation language JavaScript, seem
still to be stuck in the sequential past. While browser vendors
have invested heavily into the sequential performance of their
JavaScript engines and added some support for concurrency [1],
support for parallelism is still in its infancy. Parallel JavaScript [5]
and WebCL [2] are two proposals to extend JavaScript to support
parallel programming but neither is widely used. While this can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PPoPP’15, , February 7-11, 2015, San Francisco, CA, USA.

Copyright © 2015 ACM 978-1-4503-3205-7/15/02. .. $15.00.
http://dx.doi.org/10.1145/2688500.2700995

Intel Corporation, USA
jaswanth.sreeram@intel.com

Jaswanth Sreeram Danny Dig

Oregon State University, USA
digd@eecs.oregonstate.edu

Games
Peer-to-Peer and
Social
Desktop like
Data processing, analysis;
productivity
Audio and Video

Visualization
Augmented reality; voice,
gesture, user recognition
0% 10% 20% 30%

respondents

Figure 1. Categories of future web applications, identified by
respondents.

attributed to their prototypical implementation, the question remains:
Are web applications ready for parallelism?

Earlier work by Fortuna et al. [4] has found that typical web
applications have potential for achieving significant speedup from
concurrent execution. This is encouraging but most of the potential
they found stems from independent tasks rather than loops. There-
fore it would be hard to exploit it using massively data-parallel
hardware like GPUs or SIMD. Even more, Richards et al. [6] have
studied the runtime behavior of typical JavaScript applications and
found widespread use of dynamic language features, which hinder
execution on restricted hardware like GPUs and SIMD units. Both
findings suggest that, while there is some potential for task paral-
lelism, the web is not a fertile ground for data parallel programming.

While this conclusion might be true for the web of the past, our
hypothesis is that it does not apply to the emerging web of applica-
tions. With the shift of the web to an era of application centric usages
like, for example, image editing, augmented reality applications, and
sophisticated gaming, the characteristics of executed code change,
too. As these usages are more compute-intensive, they also are more
likely to gain from data-parallel compute capabilities. Even more,
due to the increased focus on application logic over just rendering
content, we also expect other high-level code properties, like use of
dynamic language features, to change. Lastly, a new generation of
programmers might also bring different programming styles to the
table, e.g., due to influences from more declarative programming
patterns during their education.

Of course, measuring such a trend in its early phases is difficult.
Most production-quality web sites are still built in a legacy style and
new applications are only beginning to emerge. Analyzing currently-
popular web sites would bias our results towards what works well
on most platforms now, not the workloads that are missing precisely
because they would require more performance. Thus, in contrast to
earlier studies, we had no adequate top-100 list or similar to draw
from. Instead, we chose to measure the change where it starts: with
the shift in developers’ opinion.

resource loading

v DOM manipulation
Q
% Canvas (read/write images)
g WebGL interaction
- number crunching

styling (CSS)

0% 20% 40% 60% 80% 100%
respondents
M is a bottleneck S0, SO... not an issue

Figure 2. The importance of various performance bottlenecks, as
scaled by respondents.

2. JavaScript in Practice: A Survey

We formulated a questionnaire consisting of 20 questions. The ques-
tions broadly fall into four categories: trends in web applications,
programming style, preferred tools and frameworks, and perceived
performance bottlenecks. We publicized the questionnaire using
social media, with help from a few influential developers in the
JavaScript community. We received 174 answers. We present here a
small subset of the survey results.

2.1 Future Trends in Web Applications

We asked developers: “In your opinion, what new kinds of applica-
tions will trend on the web over the next 5 years?” We hand-coded
their answers using qualitative thematic coding [3]. Figure 1 shows
the resulting application categories.

As a general trend, we found that applications formerly at home
on the desktop are predicted to transition to the web. With the flat-
tening of per-core performance improvement, desktop applications
have become increasingly parallel in the past few years. We expect
that their web counterparts will also need to be parallel in order to
be competitive.

2.2 Performance Bottlenecks in Current Web Applications

With the increasing richness and functionality embedded into web
applications, especially real-time interactive applications, under-
standing typical performance bottlenecks is an important considera-
tion for developers as well as for engine implementors.

Our survey asked the respondents to categorize each of several
components as ~’not an issue”, ”’so, so...”, or “’is a bottleneck”. The
aggregated responses are shown in Figure 2.

Confirming the common complaint in the JavaScript community,
53% and 48% of respondents mentioned that resource loading and
DOM manipulation (e.g., inserting or deleting elements), respec-
tively, are bottlenecks. 21% of respondents consider that number
crunching/math computation is a bottleneck. While the percent may
seem low compared to the opinion on other operations, we see it as
significant in the context of current popular web sites, which usually
do not execute any computationally-intensive algorithms.

3. Case Study

The survey gave us a general idea of web developers’ preferences,
and of emerging trends. The case study brings insight into the
programming style and issues prevalent in the computationally-
intensive parts of emerging web applications.

We selected 12 workloads from the categories mentioned by
the developers and analyzed them for latent data parallelism. In
particular, we were interested in the presence of parallelizable
loops and their approximate percentage of execution time. For each
application, we inspect the top loop nests that, together, make up at

least two thirds of the application’s time spent in loops. Altogether,
we inspect 22 loop nests across 12 subject web applications.

About three fourths of the inspected loop nests have some
intrinsic parallelism, i.e. do not have dependencies that we think
could not be broken. Also, in most cases, the trip count and
granularity is high enough for some form of data-parallelism to
be potentially useful. Still, exploiting this parallelism may not be
easy. In many cases it would require a combination of code changes
and browsers with efficient parallel data structures and concurrent
DOM and Canvas implementations.

We also looked at further code properties which may influence
parallelism. We found that JavaScript poses the traditional issues
to parallelization, while also raising new ones that stem from its
evolving, dynamic, and web-centric nature. In addition to discov-
ering available parallelism and matching the parallel computation
to the hardware, a JavaScript programmer also needs to get around
concurrent updates to the non-concurrent DOM, concurrent reads
and writes of global memory, and polymorphic variables.

Overall, our findings differ from earlier work and we found a
surprisingly large quantity of compute-intensive loops of which
many were latently parallel.

4. Conclusion

With the proliferation of desktop and especially mobile operating
systems, the web is increasingly seen as a cross-platform solution for
delivering applications. In our survey, when asked about emerging
trends in web applications, JavaScript developers mostly identified
kinds of applications that, not long ago, were only available as native
desktop applications. But this transitioning to the web comes with
a challenge: native desktop applications had to resort to multi and
many-core parallelism for performance. Should the web follow suit?
If so, how hard will it be?

To answer these questions we conducted a survey among
JavaScript developers asking them about their use of JavaScript
language-features that may impede parallelism. Furthermore, we
did a case study looking at the computationally-intensive loop nests
in 12 web applications. While JavaScript is highly dynamic, we
found that developers seldom use language features that impede
parallelism. An important current limitation is that browsers have
non-concurrent implementations of basic data structures (e.g., the
DOM). Much of the compute-intensive code we inspected is written
in a style typical of non-dynamic imperative languages. This means
that many of the lessons learned by the programming community
while parallelizing desktop applications will translate to the web.

A detailed technical report of our findings is available at:

http://hdl.handle.net/2142/72643

Acknowledgment

This research is partly funded through NSFCCF-1439957 and CCF-
1442157 grants, a SEIF award from Microsoft, and a gift grant from
Intel.

References
[1] Web Workers. http://www.w3.org/TR/workers/.
[2] webCL. http://www.khronos.org/webcl/.

[3] D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis
in software engineering. In ESEM ’11. IEEE.

[4] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A limit study of
javascript parallelism. In IISWC ’10.

[5] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River Trail: A
path to parallelism in JavaScript. In OOPSLA ’13.

[6] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of javascript programs. In PLDI ’10.

