
Are web applications ready for parallelism?
Cosmin Radoi
University of Illinois

Stephan Herhut Jaswanth Sreeram
Intel Corporation

Danny Dig
Oregon State University

motivation
◦ web applications have become pervasive
◦ JavaScript is the only language supported by all major web browsers
◦ JavaScript is by design sequential
◦ recent efforts to bring parallelism to JavaScript: Parallel JavaScript, WebCL

approach
I. Survey
◦ 20 questions, 174 distinct reposnses

II. Case study
◦ 12 web applications, 22 loop nests

Chart 1

Games
Peer-to-Peer and  

Social
Desktop like

Data processing, analysis;
productivity

Audio and Video

Visualization
Augmented reality; voice,
gesture, user recognition

respondents

0% 10% 20% 30%

Figure 1. Future web application categories, as identified by re-
spondents

this reason, features or user experiences that require a significant
computational horsepower are uncommon. For these reasons we
hypothesize that popular websites are typically not early adopters of
emerging language and API features.

Our survey asked the developers: “In your opinion, what new
kinds of applications will trend on the web over the next 5 years?”.
We hand-coded their answers using qualitative thematic coding
[18]. We developed a set of codes that we validated by achieving an
inter-rater agreement of over 80% for 20% of the data. Two coders,
the second and the third authors, developed the categories which
were not known a-priori. For measuring the agreement we used the
Jaccard coefficient.

Figure 1 shows the resulting application categories. Many of the
respondents mentioned web-based commercial-quality 3D games
such as those available on modern desktop class machines or
consoles. Client hardware found on even small form factor devices
such as phones and tablets is rapidly becoming more powerful.
In addition, APIs such as Canvas [5], Pointer lock [9] and touch
enabling APIs [6] are being standardized and many recent versions
of major browsers already support them. In particular, the Canvas
element allows for fine-grained control over drawing and is a key
enabler for cross-platform graphics in the browser without any third-
party plugins. The performance of drawing operations on Canvas
objects has also received considerable attention and has improved
dramatically over browser generations. The WebGL API [13] allows
executing shaders on client GPUs - a feature that has traditionally
only been available to native games. Finally, the cross-platform
portability and access-anywhere model of web applications means
that these games can reach a wider audience. This leads us to
expect HTML5 game engines to rapidly evolve from simple 2D
views, primitive physics and gameplay to 3D or isometric 3D views,
realistic physics [3] and game AI.

Games have traditionally been important drivers of evolution in
consumer hardware. Modern native game engines make extensive
use of parallel hardware to deliver quality gameplay experiences. For
example, they use the increasingly sophisticated GPUs for realistic
rendering and physics computations, they use multiple cores and
vector instructions extensively for task level and SIMD parallelism.
However, these platform capabilities are not available to web-based
games engines today as browser engines do not expose parallel
hardware to JavaScript programs (with the exception of shader
programs written in WebGL). We argue that this restriction implies
that web-based game applications will deliver lower quality user
experiences unless there are programming models that appropriately
expose the full spectrum of hardware parallelism to web applications
in a fashion that preserves safety and programmability.

bo
ttl

en
ec

k

resource loading
DOM manipulation

Canvas (read/write images)
WebGL interaction
number crunching

styling (CSS)

respondents

0% 20% 40% 60% 80% 100%

is a bottleneck so, so... not an issue

Figure 2. Performance bottlenecks importance as scaled by respon-
dents

20% of the respondents have mentioned peer-to-peer and social
applications, supporting that the current trend towards a more social
web will continue.

Almost 20% of the respondents only mentioned desktop-like
applications. While this is not a category per se, we have included
this response to highlight this general trend. The other common
responses to this question are related to audio and video processing,
data visualization, data analysis and rich productivity suites, voice
and gesture recognition, and augmented reality.

Overall, the answers indicate that a majority of our respondents
expect future applications to be more computationally intensive,
real-time, and interactive.

2.2 Performance bottlenecks in current web applications
With the increasing richness and functionality embedded into web
applications, especially real-time interactive applications, under-
standing typical performance bottlenecks are important considera-
tions for developers as well as engine implementors. For example,
the rapid evolution of many aspects of JIT engines in major browsers
is being driven by understanding bottlenecks in commonly used pro-
grams or benchmark suites.

Our survey asked the respondents to categorize each of several
components as ”not an issue”, ”so, so...”, or ”is a bottleneck”. The
aggregated responses are shown in Figure 2.

Confirming the common complaint in the JavaScript commu-
nity, 53% and 48% of respondents mentioned that resource loading
and DOM manipulation (e.g., inserting or deleting elements), re-
spectively, are a bottleneck. Large resources typically are images,
videos and scripts that are either loaded before or during execu-
tion of a JavaScript program. 29% of respondents identified Canvas
operations as a bottleneck.

21% of respondents consider that number crunching/math com-
putation is a bottleneck. While the percent may seem low compared
to the opinion on other operations, we see it as significant in the con-
text of current popular web sites, which usually do not execute any
computationally-intensive algorithms. Another 40% of respondents
do not dismiss number crunching/math computation as an issue.

The performance bottleneck classification question was followed
by an open-ended question asking for any bottleneck we might
have missed. There were 17 responses to this question. Five of them
highlighted various aspects of layout and styling, and two mentioned
the fallbacks for old browsers. The others mentioned diverse aspects
like lack of tail recursion, garbage collection, runtime optimization,
low level audio APIs, compression, and local storage.

2.3 Programming style
The programming style preferred by developers offers some insights
into what parallel programming model they may consider to be more
“natural” to use. For example, a key pattern in (pure) functional style
programming is functions that operate on immutable data-structures

3 2015/2/3

What new kinds of applications will
trend on the web over the next 5 years?

survey

Chart 1

Games
Peer-to-Peer and  

Social
Desktop like

Data processing, analysis;
productivity

Audio and Video

Visualization
Augmented reality; voice,
gesture, user recognition

respondents

0% 10% 20% 30%

Figure 1. Future web application categories, as identified by re-
spondents

this reason, features or user experiences that require a significant
computational horsepower are uncommon. For these reasons we
hypothesize that popular websites are typically not early adopters of
emerging language and API features.

Our survey asked the developers: “In your opinion, what new
kinds of applications will trend on the web over the next 5 years?”.
We hand-coded their answers using qualitative thematic coding
[18]. We developed a set of codes that we validated by achieving an
inter-rater agreement of over 80% for 20% of the data. Two coders,
the second and the third authors, developed the categories which
were not known a-priori. For measuring the agreement we used the
Jaccard coefficient.

Figure 1 shows the resulting application categories. Many of the
respondents mentioned web-based commercial-quality 3D games
such as those available on modern desktop class machines or
consoles. Client hardware found on even small form factor devices
such as phones and tablets is rapidly becoming more powerful.
In addition, APIs such as Canvas [5], Pointer lock [9] and touch
enabling APIs [6] are being standardized and many recent versions
of major browsers already support them. In particular, the Canvas
element allows for fine-grained control over drawing and is a key
enabler for cross-platform graphics in the browser without any third-
party plugins. The performance of drawing operations on Canvas
objects has also received considerable attention and has improved
dramatically over browser generations. The WebGL API [13] allows
executing shaders on client GPUs - a feature that has traditionally
only been available to native games. Finally, the cross-platform
portability and access-anywhere model of web applications means
that these games can reach a wider audience. This leads us to
expect HTML5 game engines to rapidly evolve from simple 2D
views, primitive physics and gameplay to 3D or isometric 3D views,
realistic physics [3] and game AI.

Games have traditionally been important drivers of evolution in
consumer hardware. Modern native game engines make extensive
use of parallel hardware to deliver quality gameplay experiences. For
example, they use the increasingly sophisticated GPUs for realistic
rendering and physics computations, they use multiple cores and
vector instructions extensively for task level and SIMD parallelism.
However, these platform capabilities are not available to web-based
games engines today as browser engines do not expose parallel
hardware to JavaScript programs (with the exception of shader
programs written in WebGL). We argue that this restriction implies
that web-based game applications will deliver lower quality user
experiences unless there are programming models that appropriately
expose the full spectrum of hardware parallelism to web applications
in a fashion that preserves safety and programmability.

bo
ttl

en
ec

k
resource loading

DOM manipulation
Canvas (read/write images)

WebGL interaction
number crunching

styling (CSS)

respondents

0% 20% 40% 60% 80% 100%

is a bottleneck so, so... not an issue

Figure 2. Performance bottlenecks importance as scaled by respon-
dents

20% of the respondents have mentioned peer-to-peer and social
applications, supporting that the current trend towards a more social
web will continue.

Almost 20% of the respondents only mentioned desktop-like
applications. While this is not a category per se, we have included
this response to highlight this general trend. The other common
responses to this question are related to audio and video processing,
data visualization, data analysis and rich productivity suites, voice
and gesture recognition, and augmented reality.

Overall, the answers indicate that a majority of our respondents
expect future applications to be more computationally intensive,
real-time, and interactive.

2.2 Performance bottlenecks in current web applications
With the increasing richness and functionality embedded into web
applications, especially real-time interactive applications, under-
standing typical performance bottlenecks are important considera-
tions for developers as well as engine implementors. For example,
the rapid evolution of many aspects of JIT engines in major browsers
is being driven by understanding bottlenecks in commonly used pro-
grams or benchmark suites.

Our survey asked the respondents to categorize each of several
components as ”not an issue”, ”so, so...”, or ”is a bottleneck”. The
aggregated responses are shown in Figure 2.

Confirming the common complaint in the JavaScript commu-
nity, 53% and 48% of respondents mentioned that resource loading
and DOM manipulation (e.g., inserting or deleting elements), re-
spectively, are a bottleneck. Large resources typically are images,
videos and scripts that are either loaded before or during execu-
tion of a JavaScript program. 29% of respondents identified Canvas
operations as a bottleneck.

21% of respondents consider that number crunching/math com-
putation is a bottleneck. While the percent may seem low compared
to the opinion on other operations, we see it as significant in the con-
text of current popular web sites, which usually do not execute any
computationally-intensive algorithms. Another 40% of respondents
do not dismiss number crunching/math computation as an issue.

The performance bottleneck classification question was followed
by an open-ended question asking for any bottleneck we might
have missed. There were 17 responses to this question. Five of them
highlighted various aspects of layout and styling, and two mentioned
the fallbacks for old browsers. The others mentioned diverse aspects
like lack of tail recursion, garbage collection, runtime optimization,
low level audio APIs, compression, and local storage.

2.3 Programming style
The programming style preferred by developers offers some insights
into what parallel programming model they may consider to be more
“natural” to use. For example, a key pattern in (pure) functional style
programming is functions that operate on immutable data-structures

3 2015/2/3

 Which of the following are
performance bottlenecks for

JavaScript?

re
sp
on
de
nt
s

7%
13%
20%
27%
33%
40%

1 2 3 4 5

re
sp
on
de
nt
s

10%
20%
30%
40%
50%
60%

1 2 3 4 5

Figure 3. Programming style preference scale from Functional (1)
to Imperative (5)

and are effectively stateless. This pattern is important in the context
of parallel execution as immutable shared state simplifies value
synchronization and has been used effectively in several parallel
programming models [10, 22, 26]. On the other hand, programmers
who like writing imperative style code may prefer task or thread-
level parallel primitives with explicit synchronization on mutable
state such as in languages such as C/C++ or Java.

Our survey asked developers which selection of language fea-
tures they used frequently and which ones they did not. The results
are summarized below.

Functional vs Imperative style While JavaScript uses the block
structured syntax found in imperative languages like C/C++, Java
and Python, it also supports many features commonly found in
functional programming languages. For example JavaScript supports
first class functions and closures.

The question is asked in order to qualitatively understand the
style preferred by the respondents. We asked programmer to rate
their preference on a scale of 1-5 with 1 being a strongly functional
style and 5 being a strongly imperative style. The results are sum-
marized in Figure 3. 31% of respondents replied they preferred to
write code in a strongly functional style and 5% said they preferred a
more imperative style. 52% of respondents also answered the “Why”
follow-up question. Of these, a majority of the respondents who
answered ”1” (i.e., they strongly preferred a functional style) at the
preference question mentioned that they found functional code to
be more concise, readable, or understandable.

A few of the respondents who answered that they preferred
a more imperative style pointed to performance issues as one of
the reasons for their choice. An important consideration is the
lack of tail call optimization in JavaScript which makes expressing
iteration as recursion inefficient. Indeed ECMAScript 6, the next
version of the JavaScript language standard includes support for
tail call optimization to accommodate programming styles that are
qualitatively more functional in nature.

Finally, a few of the respondents leaning towards more functional
code, and a majority of those leaning towards imperative code,
mentioned their background in a particular programming style as
the reason for their choice.

High-level Array operators vs for-loops JavaScript Arrays have
builtin operators such as map, forEach, and every. For example,
the map method takes as argument a callback function, invokes it
for each element in the Array in order and constructs a new Array
out of the results of the callback. In addition to the pure JavaScript
method, frameworks such as Prototype also include methods such
as map on their own data types.

This question attempts to understand whether, why and when
developers prefer to use these operators instead of iterating over
the elements of the Array using a loop. Developers’ preference
can help determine the best way to make parallelism available.
If developers prefer explicit loops, parallelism could be exposed
through a loop annotation (akin to the parallel OpenMP pragma).
If developers prefer operators, parallelism can be exposed though a
special collection API, like the Parallel JavaScript proposal [27].

re
sp
on
de
nt
s

7%
13%
20%
27%
33%
40%

1 2 3 4 5

re
sp
on
de
nt
s

10%
20%
30%
40%
50%
60%

1 2 3 4 5

Figure 4. Preference scale for variables: from Monomorphic (1) to
Polymorphic (5)

Of the respondents who answered this question, 74% said they
preferred using the builtin operators. The principle reason given
in the open-ended answer was that with the high-level operators,
programmer intent was easier to convey and understand leading
to better readability. Several respondents also mentioned the com-
posability benefits of using the operators instead of explicit loops.
Another common justification was that the callback functions sup-
plied to the operators provided a scope for variables that is missing
from explicit loops.

Several respondents who said they favored explicit loops cited
the performance gap as an important reason for their choice. A few
others mentioned that they preferred initially using the high-level
operators, profiling their program to see if any bottlenecks were due
to use of these constructs and replacing them with loops.

2.4 Parallelism-inhibiting language use
Use of global variables Global variables are common in JavaScript
programs, despite being considered bad programming practice. They
also make parallelization mode difficult and error-prone as they can
generate race conditions. We asked developers the open-ended ques-
tion “What would be a scenario where using global variables helps?”
and got 105 responses. This question attempts to understand if and
how our respondents use them. 33 of the respondents mentioned
emulating a form of namespace or module system. Another com-
mon usage pattern mentioned was to communicate values between
different scripts on the same page during execution and between
the server and client on page load. Several respondents answered
that they use global singleton for important data structures that are
accessed in several parts of the program.

In our case study (Sections 3 and 4), we have encountered few
instances of problematic use of global variables.

Polymorphism JavaScript is dynamically typed and both functions
and variables can be polymorphic. A polymorphic variable can
change its type during execution, e.g., we can assign a string to a
variable that has so far pointed to an integer. While the flexibility can
be useful in certain cases, it can also hamper compiler optimizations
that depend on the variable’s type.

Richards et al. [31] analyzed a large corpus of real-world
JavaScript programs taken from the 100 most popular websites
on the internet according to Alexa. They found that 81% of the call
sites in these programs were monomorphic. Further, over 90% of
functions were non-variadic i.e., their arity was fixed.

Our survey asked the respondents to rate their JavaScript pro-
grams on a scale of 1-5 with 1 presenting programs with purely
monomorphic variables and 5 being programs that make extensive
use of variable polymorphism. A summary of the responses is shown
in Figure 4. About 58% of the respondents (98 out of 168) said the
programs they write are purely monomorphic for variables. In con-
trast just 1% (2 out of 168) answered that their code made extensive
use of variable polymorphism.

These results are similar to the findings of Richards et al. [31]
and indicate that a majority of JavaScript code is written in a de
facto statically-typed fashion which means that modern JIT engines
may be able to infer these types effectively and produce performant

4 2015/2/3

re
sp
on
de
nt
s

7%
13%
20%
27%
33%
40%

1 2 3 4 5

re
sp
on
de
nt
s

10%
20%
30%
40%
50%
60%

1 2 3 4 5

Figure 3. Programming style preference scale from Functional (1)
to Imperative (5)

and are effectively stateless. This pattern is important in the context
of parallel execution as immutable shared state simplifies value
synchronization and has been used effectively in several parallel
programming models [10, 22, 26]. On the other hand, programmers
who like writing imperative style code may prefer task or thread-
level parallel primitives with explicit synchronization on mutable
state such as in languages such as C/C++ or Java.

Our survey asked developers which selection of language fea-
tures they used frequently and which ones they did not. The results
are summarized below.

Functional vs Imperative style While JavaScript uses the block
structured syntax found in imperative languages like C/C++, Java
and Python, it also supports many features commonly found in
functional programming languages. For example JavaScript supports
first class functions and closures.

The question is asked in order to qualitatively understand the
style preferred by the respondents. We asked programmer to rate
their preference on a scale of 1-5 with 1 being a strongly functional
style and 5 being a strongly imperative style. The results are sum-
marized in Figure 3. 31% of respondents replied they preferred to
write code in a strongly functional style and 5% said they preferred a
more imperative style. 52% of respondents also answered the “Why”
follow-up question. Of these, a majority of the respondents who
answered ”1” (i.e., they strongly preferred a functional style) at the
preference question mentioned that they found functional code to
be more concise, readable, or understandable.

A few of the respondents who answered that they preferred
a more imperative style pointed to performance issues as one of
the reasons for their choice. An important consideration is the
lack of tail call optimization in JavaScript which makes expressing
iteration as recursion inefficient. Indeed ECMAScript 6, the next
version of the JavaScript language standard includes support for
tail call optimization to accommodate programming styles that are
qualitatively more functional in nature.

Finally, a few of the respondents leaning towards more functional
code, and a majority of those leaning towards imperative code,
mentioned their background in a particular programming style as
the reason for their choice.

High-level Array operators vs for-loops JavaScript Arrays have
builtin operators such as map, forEach, and every. For example,
the map method takes as argument a callback function, invokes it
for each element in the Array in order and constructs a new Array
out of the results of the callback. In addition to the pure JavaScript
method, frameworks such as Prototype also include methods such
as map on their own data types.

This question attempts to understand whether, why and when
developers prefer to use these operators instead of iterating over
the elements of the Array using a loop. Developers’ preference
can help determine the best way to make parallelism available.
If developers prefer explicit loops, parallelism could be exposed
through a loop annotation (akin to the parallel OpenMP pragma).
If developers prefer operators, parallelism can be exposed though a
special collection API, like the Parallel JavaScript proposal [27].

re
sp
on
de
nt
s

7%
13%
20%
27%
33%
40%

1 2 3 4 5

re
sp
on
de
nt
s

10%
20%
30%
40%
50%
60%

1 2 3 4 5

Figure 4. Preference scale for variables: from Monomorphic (1) to
Polymorphic (5)

Of the respondents who answered this question, 74% said they
preferred using the builtin operators. The principle reason given
in the open-ended answer was that with the high-level operators,
programmer intent was easier to convey and understand leading
to better readability. Several respondents also mentioned the com-
posability benefits of using the operators instead of explicit loops.
Another common justification was that the callback functions sup-
plied to the operators provided a scope for variables that is missing
from explicit loops.

Several respondents who said they favored explicit loops cited
the performance gap as an important reason for their choice. A few
others mentioned that they preferred initially using the high-level
operators, profiling their program to see if any bottlenecks were due
to use of these constructs and replacing them with loops.

2.4 Parallelism-inhibiting language use
Use of global variables Global variables are common in JavaScript
programs, despite being considered bad programming practice. They
also make parallelization mode difficult and error-prone as they can
generate race conditions. We asked developers the open-ended ques-
tion “What would be a scenario where using global variables helps?”
and got 105 responses. This question attempts to understand if and
how our respondents use them. 33 of the respondents mentioned
emulating a form of namespace or module system. Another com-
mon usage pattern mentioned was to communicate values between
different scripts on the same page during execution and between
the server and client on page load. Several respondents answered
that they use global singleton for important data structures that are
accessed in several parts of the program.

In our case study (Sections 3 and 4), we have encountered few
instances of problematic use of global variables.

Polymorphism JavaScript is dynamically typed and both functions
and variables can be polymorphic. A polymorphic variable can
change its type during execution, e.g., we can assign a string to a
variable that has so far pointed to an integer. While the flexibility can
be useful in certain cases, it can also hamper compiler optimizations
that depend on the variable’s type.

Richards et al. [31] analyzed a large corpus of real-world
JavaScript programs taken from the 100 most popular websites
on the internet according to Alexa. They found that 81% of the call
sites in these programs were monomorphic. Further, over 90% of
functions were non-variadic i.e., their arity was fixed.

Our survey asked the respondents to rate their JavaScript pro-
grams on a scale of 1-5 with 1 presenting programs with purely
monomorphic variables and 5 being programs that make extensive
use of variable polymorphism. A summary of the responses is shown
in Figure 4. About 58% of the respondents (98 out of 168) said the
programs they write are purely monomorphic for variables. In con-
trast just 1% (2 out of 168) answered that their code made extensive
use of variable polymorphism.

These results are similar to the findings of Richards et al. [31]
and indicate that a majority of JavaScript code is written in a de
facto statically-typed fashion which means that modern JIT engines
may be able to infer these types effectively and produce performant

4 2015/2/3

Do you prefer code written in a more
(1) functional style or (5) imperative style?

Are variables in your code typically more (1)
monomorphic or (2) polymorphic?

case study

How much latent data parallelism is available?

difficulty of breaking
dependencies

easy 14

medium 3

hard 5

hard
5

medium
3

easy
14

easy 7

medium 5

hard 10overall parallelization
difficulty

easy 14

medium 3

hard 5

easy 7

medium 5

hard 10

hard
10

medium
5easy

7

issues impeding parallelization
Control-flow divergence
◦ branching statements, loops with data-dependent trip count
◦ hampers parallelization on SIMD architectures
◦ serious issue in 8/22 cases, appears in another 7

DOM accesses
◦ there is no concurrent DOM implementation
◦ an issue in 10/22 cases

Polymorphic variables
◦ no polymorphic variables in inspected loops

