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challenges

o parallel, distributable programming model o loop-carried dependencies

o fault-tolerance, elastic scaling o mappers and reducers can only access local data (MapReduce)

o integration with distributed file system I .
mperative input code
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Why translate automatically to MapReduce? :
Indirect memory access

o although simple, MapReduce is not easy . . .
, o mappers and reducers communicate via a shuffle operation

o reduce cost of retargeting legacy code , . .
o , o the shuffle is usually equivalent to an indirect memory access

- allow developers to concentrate on familiar sequential code . . ,
o indirect memory accesses are hard for parallelizing compilers

sequential imperative

Map<String,Integer> count = new HashMap<>();
for (int i = ©; i < docs.size(); i++) { functional MapReduce
String[] words = tokenize(docs.get(1i));
for (int J = @; j < words.length; j++) {
String word = words[j];
Integer prev = count.get(word);
1f (prev == null) prev = 0;
count.put(word, prev + 1);
h
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: docs

.flatMap({ case (1, doc) => tokenize(doc) })
MOLD .map({ case (3, word) => (word, 1) })
.reduceByKey({ case (cl, c2) => cl + c2 })
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term rewrite system

fold-to-groupBy

words.groupBy(word => word).map { case (word, list) =>
list.fold(count(word)) { (sum, elem) => sum + 1 }

words.fold(count){ case (runningCount, word) =>
runningCount.update(word, runningCount(word) + 1) :
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Pattern matching variables: domain collection 1index expression value expression
Condition: the value expression only accesses the collection at the index expression

evaluation

Evaluation suite

> Phoenix benchmark suite

o WordCount, Color Histogram, LinearRegression, StringMatch,
MatrixProduct, Principal Component Analysis (PCA), K-Means

results

Can MOLD generate effective MapReduce code?
> no redundant computation — 5/7 programs

o parallelism — optimal for 4/7 programs

> memory accesses are localized — 5/7 programs
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