Translating imperative code to MapReduce

Cosmin Radoi
University of lllinois

Stephen J. Fink

Rodric Rabbah

IBM T.J. Watson Research Center

motivation
Why translate to MapReduce?

Parallelization

Manu Sridharan

Samsung Research America

challenges

o parallel, distributable programming model o loop-carried dependencies

o fault-tolerance, elastic scaling o mappers and reducers can only access local data (MapReduce)

o integration with distributed file system I .
mperative input code

: ] tem — d tool d '
poptiiar €COSYStEm = many o0 115 ant SEIVICEs o MapReduce is conceptually functional

Why translate automatically to MapReduce? :
Indirect memory access

o although simple, MapReduce is not easy . . .
, o mappers and reducers communicate via a shuffle operation

o reduce cost of retargeting legacy code , . .
o , o the shuffle is usually equivalent to an indirect memory access

- allow developers to concentrate on familiar sequential code . . ,
o indirect memory accesses are hard for parallelizing compilers

sequential imperative

Map<String,Integer> count = new HashMap<>();
for (int i = ©; i < docs.size(); i++) { functional MapReduce
String[] words = tokenize(docs.get(1i));
for (int J = @; j < words.length; j++) {
String word = words[j];
Integer prev = count.get(word);
1f (prev == null) prev = 0;
count.put(word, prev + 1);
h
h

: docs

.flatMap({ case (1, doc) => tokenize(doc) })
MOLD .map({ case (3, word) => (word, 1) })
.reduceByKey({ case (cl, c2) => cl + c2 })

| program variant exploration
system overview

Equivalent states

g high-level language )
(Scala)

o all a-equivalent which have the same (-reduced form

> rewriting over B-reduced form — no recursion

I
I
I
I
J

: N 2 Search
. code generationT > based on pluggable cost function
: )\ o cost function can be platform-dependent
: optimisation variants > gradient descent

g high-level language A : Y,

(J ava) | 4\

- ¢ g | optimization /'@
I " En

r A - r D @ o

Array SSA translation . lambda calculus @' @

' CDas
I
I

N

term rewrite system

fold-to-groupBy

words.groupBy(word => word).map { case (word, list) =>
list.fold(count(word)) { (sum, elem) => sum + 1 }

words.fold(count){ case (runningCount, word) =>
runningCount.update(word, runningCount(word) + 1) :

¥ ¥

Pattern matching variables: domain collection 1index expression value expression
Condition: the value expression only accesses the collection at the index expression

evaluation

Evaluation suite

> Phoenix benchmark suite

o WordCount, Color Histogram, LinearRegression, StringMatch,
MatrixProduct, Principal Component Analysis (PCA), K-Means

results

Can MOLD generate effective MapReduce code?
> no redundant computation — 5/7 programs

o parallelism — optimal for 4/7 programs

> memory accesses are localized — 5/7 programs

OOPSLA "14 — talk is Friday @ 2:37pm, Salon F



