
program variant exploration
Equivalent states
◦ all !-equivalent which have the same β-reduced form 
◦ rewriting over β-reduced form — no recursion

Search
◦ based on pluggable cost function
◦ cost function can be platform-dependent
◦ gradient descent

Translating imperative code to MapReduce
Cosmin Radoi
University of Illinois 

Stephen J. Fink         Rodric Rabbah
IBM T.J. Watson Research Center

Manu Sridharan
Samsung Research America

sequential imperative
Map<String,Integer> count = new HashMap<>();
  
for (int i = 0; i < docs.size(); i++) {
  String[] words = tokenize(docs.get(i));
  for (int j = 0; j < words.length; j++) {
  String word = words[j];
    Integer prev = count.get(word);
    if (prev == null) prev = 0;
    count.put(word, prev + 1);
  } 
}

functional MapReduce
docs
  .flatMap({ case (i, doc) => tokenize(doc) })
  .map({ case (j, word) => (word, 1) })
  .reduceByKey({ case (c1, c2) => c1 + c2 })

motivation
Why translate to MapReduce?
◦ parallel, distributable programming model
◦ fault-tolerance, elastic scaling 
◦ integration with distributed file system
◦ popular  ecosystem — many good tools and services

Why translate automatically to MapReduce?
◦ although simple, MapReduce is not easy
◦ reduce cost of retargeting legacy code
◦ allow developers to concentrate on familiar sequential code

challenges
Parallelization
◦ loop-carried dependencies
◦ mappers and reducers can only access local data (MapReduce)

Imperative input code 
◦ MapReduce is conceptually functional

Indirect memory access 
◦ mappers and reducers communicate via a shuffle operation
◦ the shuffle is usually equivalent to an indirect memory access
◦ indirect memory accesses are hard for parallelizing compilers

⇒
MOLD

78

81

75

63
57

54
47

33

…
… …

55

32

21 …

evaluation
Evaluation suite
◦ Phoenix benchmark suite
◦ WordCount, Color Histogram, LinearRegression, StringMatch, 
MatrixProduct, Principal Component Analysis (PCA), K-Means

⇒words.fold(count){ case (runningCount, word) => 
    runningCount.update(word, runningCount(word) + 1)
}

words.groupBy(word => word).map { case (word, list) => 
        list.fold(count(word)) { (sum, elem) => sum + 1 }
}

domain collection index expression value expression

results
Can MOLD generate effective MapReduce code?
◦ no redundant computation — 5/7 programs
◦ parallelism — optimal for 4/7 programs
◦ memory accesses are localized — 5/7 programs

system overview

Pattern matching variables:
Condition: the value expression only accesses the collection at the index expression

OOPSLA ’14 — talk is Friday @ 2:37pm, Salon F 

fold-to-groupBy


