
Translating imperative code to MapReduce

Cosmin Rădoi 1 Stephen J. Fink 2

Rodric Rabbah 2 Manu Sridharan 3

1University of Illinois

2IBM T.J. Watson Research Center

3Samsung Research America

1 / 24

background: What is MapReduce?

simple programing model for processing big data on a cluster

advantages:
I fault-tolerance
I elastic scaling
I integration with distributed file systems
I popular ecosystem — many good tools and services

Jeffrey Dean and Sanjay Ghemawat.

MapReduce: simplified data processing on large clusters. OSDI’04

2 / 24

background: What is MapReduce?

simple programing model for processing big data on a cluster

advantages:
I fault-tolerance
I elastic scaling
I integration with distributed file systems
I popular ecosystem — many good tools and services

Jeffrey Dean and Sanjay Ghemawat.

MapReduce: simplified data processing on large clusters. OSDI’04

2 / 24

background: What is MapReduce?

simple programing model for processing big data on a cluster

advantages:
I fault-tolerance
I elastic scaling
I integration with distributed file systems

I popular ecosystem — many good tools and services

Jeffrey Dean and Sanjay Ghemawat.

MapReduce: simplified data processing on large clusters. OSDI’04

2 / 24

background: What is MapReduce?

simple programing model for processing big data on a cluster

advantages:
I fault-tolerance
I elastic scaling
I integration with distributed file systems
I popular ecosystem — many good tools and services

Jeffrey Dean and Sanjay Ghemawat.

MapReduce: simplified data processing on large clusters. OSDI’04

2 / 24

Why translate automatically to MapReduce?

I although simple, MapReduce is not easy

I reduce cost of retargeting legacy imperative code
I allow developers to concentrate on familiar imperative

sequential code

3 / 24

Why translate automatically to MapReduce?

I although simple, MapReduce is not easy
I reduce cost of retargeting legacy imperative code

I allow developers to concentrate on familiar imperative
sequential code

3 / 24

Why translate automatically to MapReduce?

I although simple, MapReduce is not easy
I reduce cost of retargeting legacy imperative code
I allow developers to concentrate on familiar imperative

sequential code

3 / 24

example

WordCount

4 / 24

example: MapReduce WordCount

cat catcat catcat dog dogcat dog dog
doc1 doc2

MAP

⟨cat, 1⟩
⟨dog, 1⟩
⟨dog, 1⟩

⟨cat, 1⟩
⟨cat, 1⟩

↓ ↓

dog

SHUFFLE ↓ ↓

cat

↓ ↓ ↓

REDUCE ↓ ↓

cat dog

5 / 24

example: MapReduce WordCount

cat catcat catcat dog dogcat dog dog
doc1 doc2

MAP

⟨cat, 1⟩
⟨dog, 1⟩
⟨dog, 1⟩

⟨cat, 1⟩
⟨cat, 1⟩

↓ ↓

dog

SHUFFLE ↓ ↓

cat

↓ ↓ ↓

REDUCE ↓ ↓

cat dog

5 / 24

example: MapReduce WordCount

cat catcat catcat dog dogcat dog dog
doc1 doc2

MAP

⟨cat, 1⟩
⟨dog, 1⟩
⟨dog, 1⟩

⟨cat, 1⟩
⟨cat, 1⟩

↓ ↓

dog

SHUFFLE ↓ ↓

cat

↓ ↓ ↓

REDUCE ↓ ↓

cat dog

5 / 24

example: MapReduce WordCount

cat catcat catcat dog dogcat dog dog
doc1 doc2

MAP

⟨cat, 1⟩
⟨dog, 1⟩
⟨dog, 1⟩

⟨cat, 1⟩
⟨cat, 1⟩

↓ ↓

dog

SHUFFLE ↓ ↓

cat

↓ ↓ ↓

REDUCE ↓ ↓

cat dog

5 / 24

example: MapReduce WordCount

cat catcat catcat dog dogcat dog dog
doc1 doc2

MAP

⟨cat, 1⟩
⟨dog, 1⟩
⟨dog, 1⟩

⟨cat, 1⟩
⟨cat, 1⟩

↓ ↓

dog

SHUFFLE ↓ ↓

cat

↓ ↓ ↓

REDUCE ↓ ↓

cat dog

5 / 24

example: MapReduce WordCount

cat catcat catcat dog dogcat dog dog
doc1 doc2

MAP

⟨cat, 1⟩
⟨dog, 1⟩
⟨dog, 1⟩

⟨cat, 1⟩
⟨cat, 1⟩

↓ ↓

dog

SHUFFLE ↓ ↓

cat

↓ ↓ ↓

REDUCE ↓ ↓

cat dog

5 / 24

example

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

6 / 24

example: imperative WordCount

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {
String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

6 / 24

example: imperative WordCount

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

6 / 24

example: imperative WordCount

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

6 / 24

Example - imperative WordCount

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {
String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

6 / 24

example: imperative WordCount

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

6 / 24

example: imperative WordCount⇒ MapReduce

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

⇓
docs
.flatMap({ case (i, doc) => tokenize(doc) })
.map({ case (j, word) => (word, 1) })
.reduceByKey({ case (c1, c2) => c1 + c2 })

7 / 24

the MAP

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

⇓
docs

.flatMap({ case (i, doc) => tokenize(doc) })

.map({ case (j, word) => (word, 1) })

.reduceByKey({ case (c1, c2) => c1 + c2 })

7 / 24

the SHUFFLE

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

⇓
docs

.flatMap({ case (i, doc) => tokenize(doc) })

.map({ case (j, word) => (word, 1) })

.reduceByKey({ case (c1, c2) => c1 + c2 })

7 / 24

the REDUCE

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

⇓
docs

.flatMap({ case (i, doc) => tokenize(doc) })

.map({ case (j, word) => (word, 1) })

.reduceByKey({ case (c1, c2) => c1 + c2 })

7 / 24

MapReduce generated by MOLD

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

⇓
docs

.flatMap({ case (i, doc) => tokenize(doc) })

.map({ case (j, word) => (word, 1) })

.reduceByKey({ case (c1, c2) => c1 + c2 })

7 / 24

MapReduce generated by MOLD

Map<String,Integer> count = new HashMap<>();

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));
for (int j = 0; j < words.length; j++) {

String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}
}

⇓

⇓ MOLD
docs

.flatMap({ case (i, doc) => tokenize(doc) })

.map({ case (j, word) => (word, 1) })

.reduceByKey({ case (c1, c2) => c1 + c2 })

7 / 24

high-level “How?”

high-level code
(Java)

Array SSA lambda calculus
with fold

code variants

optimization

MapReduce code
(Scala)

term-rewrite system

Andrew W. Appel. SSA is Functional Programming. ’98
Richard Kelsey. A Correspondence between Continuation Passing Style and Static
Single Assignment Form. ’95

7 / 24

high-level “How?”

high-level code
(Java)

Array SSA lambda calculus
with fold

code variants

optimization

MapReduce code
(Scala)

term-rewrite system

Kathleen Knobe and Vivek Sarkar. Array SSA form and its use in parallelization.
POPL’98

Andrew W. Appel. SSA is Functional Programming. ’98
Richard Kelsey. A Correspondence between Continuation Passing Style and Static
Single Assignment Form. ’95

7 / 24

high-level “How?”

high-level code
(Java)

Array SSA lambda calculus
with fold

code variants

optimization

MapReduce code
(Scala)

term-rewrite system

Andrew W. Appel. SSA is Functional Programming. ’98
Richard Kelsey. A Correspondence between Continuation Passing Style and Static
Single Assignment Form. ’95

7 / 24

high-level “How?”

high-level code
(Java)

Array SSA lambda calculus
with fold

code variants

optimization

MapReduce code
(Scala)

term-rewrite system

Andrew W. Appel. SSA is Functional Programming. ’98
Richard Kelsey. A Correspondence between Continuation Passing Style and Static
Single Assignment Form. ’95

7 / 24

high-level “How?”

high-level code
(Java)

Array SSA lambda calculus
with fold

code variants

optimization

MapReduce code
(Scala)

term-rewrite system

8 / 24

imperative⇒ unoptimized functional

for (int i = 0; i < docs.size(); i++) {
String[] words = tokenize(docs.get(i));

for (int j = 0; j < words.length; j++) {
String word = words[j];
Integer prev = count.get(word);
if (prev == null) prev = 0;
count.put(word, prev + 1);

}

}

⇓
words.fold(count){ (count, word) =>

count.update(word, count(word) + 1)
}

9 / 24

how to parallelize this?

words.fold(count){ (count, word) =>
count.update(word, count(word) + 1)

}

10 / 24

high-level “How?”

high-level code
(Java)

Array SSA lambda calculus
with fold

code variants

optimization

MapReduce code
(Scala)

term-rewrite system

11 / 24

trying a fold⇒ map transformation ...

words.fold(count){ (count, word) =>
count.update(word, count(word) + 1)

}

...does not work:
distinct fold iterations can write to the same key in count

12 / 24

trying a fold⇒ map transformation ...

words.fold(count){ (count, word) =>
count.update(word, count(word) + 1)

}

...does not work:
distinct fold iterations can write to the same key in count

12 / 24

trying a fold⇒ groupBy transformation ...

words.fold(count){ (count, word) =>
count.update(word, count(word) + 1)

}

13 / 24

fold⇒ groupBy

words.fold(count){ (count, word) =>
count.update(word, count(word) + 1)

}

⇓
words.groupBy(word => word).map { (word, list) =>

list.fold(count(word)) { (sum, elem) => sum + 1 }
}

groupBy ≡ SHUFFLE

14 / 24

fold⇒ groupBy

words.fold(count){ (count, word) =>
count.update(word, count(word) + 1)

}

⇓
words.groupBy(word => word).map { (word, list) =>

list.fold(count(word)) { (sum, elem) => sum + 1 }
}

groupBy ≡ SHUFFLE

14 / 24

generic fold⇒ groupBy

words.fold(count){ (count, word) =>
count.update(word, count(word) + 1)

}

⇓
words.groupBy(word => word).map { (word, list) =>

list.fold(count(word)) { (sum, elem) => sum + 1 }
}

fold⇒ groupBy

D.fold(A) { (a, k) => a.update(I, E) }

⇓
D.groupBy(k => I).map { (i, l) =>

l.fold(A(i)) { (r, k) => E [r / a(I)] }}

I 63 a

E 63 A(6=I)

15 / 24

tranformation rules

fold⇒ groupBy

D.fold(A) { (a, k) => a.update(I, E) }

⇓
D.groupBy(k => I).map { (i, l) =>

l.fold(A(i)) { (r, k) => E [r / a(I)] }}

I 63 a

E 63 A(6=I)

16 / 24

tranformation rules

fold⇒ groupBy

D.fold(A) { (a, k) => a.update(I, E) }

⇓
D.groupBy(k => I).map { (i, l) =>

l.fold(A(i)) { (r, k) => E [r / a(I)] }}

I 63 a

E 63 A(6=I)

fold⇒ map

D.fold(A) { (a, k) => a.update(I, E) }

⇓
A.map { (k, v) => E [v / a(k)] }

D = A.keys

I = k

E 63 A(6=I)

... 16 more ...

17 / 24

tranformation rules

fold⇒ groupBy

D.fold(A) { (a, k) => a.update(I, E) }

⇓
D.groupBy(k => I).map { (i, l) =>

l.fold(A(i)) { (r, k) => E [r / a(I)] }}

I 63 a

E 63 A(6=I)

fold⇒ map

D.fold(A) { (a, k) => a.update(I, E) }

⇓
A.map { (k, v) => E [v / a(k)] }

D = A.keys

I = k

E 63 A(6=I)

... 16 more ...

17 / 24

Program variant exploration
at each step, MOLD can apply any of several
transfomation rules

the system is not confluent, nor terminating

…
… …

…

⇒ exploration/search

…
… …

…

MOLD attaches a cost to each program variant

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

C(mapFunc) = Cmap
init + Cmap

op ∗ C(Func)

searches based on the cost (gradient descent)

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

another platform? different cost function

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

different cost function⇒ different resulting programs

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

18 / 24

Program variant exploration

at each step, MOLD can apply any of several
transfomation rules

the system is not confluent, nor terminating

…
… …

…

⇒ exploration/search

…
… …

…

MOLD attaches a cost to each program variant

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

C(mapFunc) = Cmap
init + Cmap

op ∗ C(Func)

searches based on the cost (gradient descent)

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

another platform? different cost function

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

different cost function⇒ different resulting programs

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

18 / 24

Program variant exploration

at each step, MOLD can apply any of several
transfomation rules
the system is not confluent, nor terminating

…
… …

…

⇒ exploration/search

…
… …

…

MOLD attaches a cost to each program variant

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

C(mapFunc) = Cmap
init + Cmap

op ∗ C(Func)

searches based on the cost (gradient descent)

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

another platform? different cost function

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

different cost function⇒ different resulting programs

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

18 / 24

Program variant exploration

at each step, MOLD can apply any of several
transfomation rules
the system is not confluent, nor terminating

…
… …

…

⇒ exploration/search

…
… …

…

MOLD attaches a cost to each program variant

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

C(mapFunc) = Cmap
init + Cmap

op ∗ C(Func)

searches based on the cost (gradient descent)

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

another platform? different cost function

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

different cost function⇒ different resulting programs

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

18 / 24

Program variant exploration

at each step, MOLD can apply any of several
transfomation rules
the system is not confluent, nor terminating

…
… …

…

⇒ exploration/search

…
… …

…

MOLD attaches a cost to each program variant

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

C(mapFunc) = Cmap
init + Cmap

op ∗ C(Func)

searches based on the cost (gradient descent)

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

another platform? different cost function

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

different cost function⇒ different resulting programs

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

18 / 24

Program variant exploration

at each step, MOLD can apply any of several
transfomation rules
the system is not confluent, nor terminating

…
… …

…

⇒ exploration/search

…
… …

…

MOLD attaches a cost to each program variant

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

C(mapFunc) = Cmap
init + Cmap

op ∗ C(Func)

searches based on the cost (gradient descent)

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

another platform? different cost function

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

different cost function⇒ different resulting programs

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

18 / 24

Program variant exploration

at each step, MOLD can apply any of several
transfomation rules
the system is not confluent, nor terminating

…
… …

…

⇒ exploration/search

…
… …

…

MOLD attaches a cost to each program variant

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

C(mapFunc) = Cmap
init + Cmap

op ∗ C(Func)

searches based on the cost (gradient descent)

78

81

75

63

57

54

47

33

…
… …

55

32

21 …

another platform? different cost function

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

different cost function⇒ different resulting programs

78

81

44

77

67

71

69

98

…
… …

56

12

77 …

18 / 24

evaluation suite

I applied MOLD on 7 programs (Phoenix benchmark suite1)
I WordCount
I Image Histogram
I LinearRegression
I StringMatch
I MatrixProduct
I Principal Component Analysis (PCA)
I K-Means

1C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating MapReduce for multi-core and multiprocessor systems. HPCA ’07

19 / 24

evaluation methodology

Can MOLD generate effective MapReduce code?

I check semantics preservation
I manually inspect the generated code

I no redundant computation
I high level of parallelism
I accesses to large data structures should be localized

I execute with the three backends, compare with
hand-written implementations:

I Scala sequential collections
I Scala parallel collections
I Spark

20 / 24

evaluation methodology

Can MOLD generate effective MapReduce code?

I check semantics preservation
I manually inspect the generated code

I no redundant computation
I high level of parallelism
I accesses to large data structures should be localized

I execute with the three backends, compare with
hand-written implementations:

I Scala sequential collections
I Scala parallel collections
I Spark

20 / 24

evaluation methodology

Can MOLD generate effective MapReduce code?
I check semantics preservation

I manually inspect the generated code
I no redundant computation
I high level of parallelism
I accesses to large data structures should be localized

I execute with the three backends, compare with
hand-written implementations:

I Scala sequential collections
I Scala parallel collections
I Spark

20 / 24

evaluation methodology

Can MOLD generate effective MapReduce code?
I check semantics preservation
I manually inspect the generated code

I no redundant computation
I high level of parallelism
I accesses to large data structures should be localized

I execute with the three backends, compare with
hand-written implementations:

I Scala sequential collections
I Scala parallel collections
I Spark

20 / 24

Can MOLD generate effective MapReduce code?

I no redundant computation — 5/7 programs
I parallelism — optimal for 4/7 programs
I memory accesses are localized — 5/7 programs

21 / 24

evaluation methodology

Can MOLD generate effective MapReduce code?
I check semantics preservation
I manually inspect the generated code

I no redundant computation
I high level of parallelism
I accesses to large data structures should be localized

I execute with the three backends, compare with
hand-written implementations:

I Scala sequential collections
I Scala parallel collections
I Spark

22 / 24

comparison with hand-written implementations

WordCount 14.67 14.79

Histogram 3.86 4.12

LinearRegr. 25.5 21.07

StringMatch 1.64 1.34

Matrix X 0.26 0.18

PCA - -

KMeans - -

 s
pe

ed
up

0

8

16

24

32

Word
Cou

nt

Histo
gra

m

Lin
ea

r R
.

Strin
gM

atc
h

Matr
ix x PCA

KMea
ns

I baseline: hand-written Scala using sequential collections
I blue is hand-written
I green is generated

23 / 24

Conclussions

I we propose an approach for transforming sequential
imperative code to functional MapReduce

I sequential imperative⇒ Array SSA⇒ lambda with fold
I search through a space of possible optimizations

I transformations are expressed as rewrite rules
I generic handling of indirect updates
I cost function can be platform-dependent

I good results on a small set of benchmarks

24 / 24

Appendix

25 / 24

Cost estimation

depend on the loop’s � functions) can be translated to a fold.
Our current implementation only handles indexed collection
iteration with a range of numbers with stride 1.

All other SSA instructions (function calls, operations,
etc.) are transformed to lambda calculus in the intuitive
straightforward manner. Function calls are not inlined.

4. Translation system
Exploration and refinement. The transformation described
in the previous section generates a lambda calculus repre-
sentation of the original program but it is still far from
MapReduce form. The loops in the original program are now
sequential folds that do not expose any parallelism. In order
to get to MapReduce form, MOLD explores the space of
semantically equivalent programs obtained by applying a set
of program transformation rules.

MOLD distinguishes between refinement and exploration
rewrite rules. Refinement rules make definite improvements
to the input term, e.g., eliminating a redundant operation
such as fold r �hr, hk, vii . r[k := v]. Exploration rules may
either improve the original code or bring it to a form that
allows other rules to apply, e.g., loop fission is not necessarily
an optimization but may allow another rule to eliminate part
of the original loop.

Exploration rules are treated as transitions between states,
i.e., applying a transition rule generates a new state in the
system. Refinement rules do not generate new states but
are applied exhaustively to the output of an exploration
rule. One transition in our rewrite system is comprised
of one application of an exploration rule followed by a
complete reduction using the set of refinement rules. The
set of refinement rules can be seen as a separate confluent
rewrite system.

The set of transformation rules is not complete, i.e., they
do not generate all possible semantically equivalent programs.
The rules are intended to be sound, i.e., they are intended to
preserve the semantics of the original program, but we have
not formally proven this. More formal characterizations of
soundness and completeness are planned for future work.

Optimized exploration. MOLD’s rewrite system imple-
ments optimization mechanisms which can be applied ac-
cording to a number of policies, guided by estimates of code
quality. The system is not confluent nor terminating – so, the
rewrite engine explores the space of possible rewrites guided
by a heuristic driven by a cost function. The optimization
problem reduces to searching through this system for a good
solution. The number of states is kept in check by having a
single state represent all alpha-equivalent programs that have
the same beta-reduced form.

MOLD searches through the state space guided by a cost
approximation function over program variants. The cost
function approximates the runtime performance of the code
on a particular platform. Thus, MOLD allows optimization for
different platforms by adopting appropriate cost functions.

C(F � G) = C(F) + C(G)

C(F (G)) = C(F) + C(G)

C(hF, G, ...i) = C(F) + C(G) + ...

C(A[I]) = Ccollection
get + C(A) + C(I)

C(A[K :=V]) = Ccollection
set + C(A) + C(K) + C(V)

C(mapF) = Cmap
init + Cmap

op ⇤ C(F)

C(fold I F) = C(I) + Cfold
init + Cfold

op ⇤ C(F)

C(groupByF) = CgroupBy
init + CgroupBy

op ⇤ C(F)

Figure 7. Cost estimation function

Figure 7 shows the cost estimation function for generat-
ing MapReduce programs. The estimated cost is computed
recursively over a given term. The cost of function compo-
sition/application and tuples is the sum of the cost of their
subexpressions. The cost for collection accesses has an extra
weight (Ccollection

get and Ccollection
set) to encourage access lo-

calization. map and fold operators have an initial cost meant
to model the start of a distributed operation (Cmap

init, Cfold
init ,

and CgroupBy
init), and have their operation cost multiplied by a

constant (Cmap
op , Cfold

op , and CgroupBy
op) representing an approxi-

mation for the size of the array. Binary operations are curried,
and their function has a constant cost. All other functions
have a predefined, constant, cost.

A unique set of constants is used for generating all pro-
grams in our evaluation, i.e., the constants are not program-
specific. We determined good values by manually running
experiments and refining the constants. This process could
be automated to find a more precise and possibly platform-
specific set of constants. Furthermore, our rough cost esti-
mation function could be made more precise by applying
techniques such as those proposed by Klonatos et al.[16],
but the current approach has proved sufficient for optimizing
most programs in our evaluation suite.

5. Optimization rules
In this section we present the main rules of MOLD’s rewrite
system. We show the rules in a simplified form. The actual
rules have additional complexity for updating types, for
handing idiosyncrasies of our source and target languages, for
piggy-backing arity information useful for code generation,
and for optimizing the exploration. Furthermore, the actual
rule set has additional variants and guards for correctly
handling non-pure functions like random.

Figure 8 summarizes the notation and functions we use in
the following figures.

5.1 Extract map from fold

The transformation for revealing parallelism which is most
commonly applied is the “extract map from fold” rule

7 2014/8/1

25 / 24

Transformation rules

(extract map from fold)

foldhr0
0, . . . , r

0
ni�hr0, . . . , rni K V . E

(foldhr0
0, . . . , r

0
ni�hr0, . . . , rni K hvf

0 , . . . , vf
miV\ free(F) . F)

� (map�K V .hG[r0
/r], V\ free(F)i)

E = (�hvf
0 , . . . , vf

mi . F) � G

F is arg max C(G) with the condition:

@i 2 [0..n] .ri 2 G ^ ri 2 E[r0
/r]

where

r0
/r = r0

i [k]/ri[k] applied for all i 2 [1..n] k 2 K

(fold to group by)

fold r0 � r V . r[E :=B]

(map� k l .(fold r0[k]� g V . C) l)

� (groupBy�V .E)

C = B[g/r[E]]

r /2 C ^ r /2 E ^ 9 v 2 V.v 2 E

we cannot prove E is distinct across the folding

Figure 9. Rules revealing parallelism in fold operators

E letters in uppercase are pattern variables

x letters in lowercase are program variables

or patterns matching program variables

E1 ⇢ E2 E1 is a subexpression of E2

free(E) is the set of free variables in E

x 2 E is shorthand for x 2 free(E)

E[E1/E0] substitute E1 for E0 in E

K is only used for denoting pattern matches

on the parameters binding to the keys of

the operator domain

Figure 8. Legend for following figures

in Figure 9. It transforms a fold by identifying indepen-
dent computations in its combining function f , i.e., op-
erations that do not depend on results from other f invo-
cations during the fold. These independent computations
are extracted into a (parallelizable) map operation. For
example, fold 0� r k v . r + (f k v) is transformed to
(fold 0� rk vf . r + vf) � (map� k v . f k v), as (f k v)
is independent (we shall explain map shortly). After the
transformation, the purely-functional map can be easily par-
allelized, while the fold with the commutative + operation
can also be executed very efficiently.

The signatures for our data structures and mapping oper-
ators relevant to this transformation are shown in Figure 5.
Data structures are either a bag of values of type A, or in-
dexed collections (e.g., arrays or maps) with key type K and
value type V . We often view an indexed collection as a list of
key-value pairs. The first map version takes a collection of el-

ements of type A into a collection of elements of type B, as is
standard. The second map version is similar but only applies
to indexed collections; it generates a new indexed collection
with the same keys as the original and the mapped values. We
assume that a mapping function A ! B is implicitly lifted
to hK, Ai ! B if necessary.

The “extract map from fold” rule, shown in Figure 9,
matches on any fold taking hr0

0, . . . , r
0
ni as the initial

value and a function combining each tuple of keys K
and values V of a collection to a tuple hr0, . . . , rni. The
fold operation E is split into the composition of functions
(�hvf

0 , . . . , vf
mi . F) � G, such that G is the most expensive

computation (according to the cost function C; see Section 4)
that is independent of other “iterations” of the fold’s execu-
tion. If we see the fold as a loop, G does not have any loop
carried-dependencies.

How do we reason that G is independent? For a functional
fold operation, a dependence on other fold “iterations” must
be manifest as an access of an accumulator parameter ri, i.e.,
a parameter holding the “result thus far” of the fold. Hence,
if G makes no reference to any parameter ri, it is trivially
independent. Unfortunately, this simple level of reasoning is
insufficient for providing independence for important cases
like the following:

fold r0 � r k . r[k := f(r[k])]

This fold updates each entry in a collection to some function
of its previous value. We would like to extract the compu-
tation f(r[k]) into a parallel map operation, but it accesses
accumulator parameter r and hence is not trivially indepen-
dent.

To handle cases like the above, we use this more sophisti-
cated independence check for G:

@i 2 [0..n] .ri 2 G ^ ri 2 E[r0
/r]

8 2014/8/1

25 / 24

Is the proposed approach general?

loops/ translation
algorithm loop nests time (s) transformations

WordCount 2/1 11 15
Histogram 1/1 233 18
LinearRegression 1/1 28 2
StringMatch 1/1 68 2
Matrix × 3/1 40 20
PCA 5/2 66 15
KMeans 6/2 340 10

25 / 24

