
1

Hadoop+Aparapi: Making heterogenous MapReduce
programming easier

Semih Okur, Cosmin Radoi, Yu Lin Computer Science Department
University of Illinois at Urbana Champaign

{okur2, cos, yulin2}@illinois.edu

Abstract—Lately, programmers have started to take advantage
of GPU capabilities of cloud-based machines. Using the GPUs
can decrease the number of nodes required to perform the
computation by increasing the productivity per node.

We combine Hadoop, a widely-used MapReduce framework,
with Aparapi, a new Java-to-OpenCL conversion tool from AMD.
We propose an easy-to-use API which allows easy implementation
of MapReduce algorithms that make use of the GPU. Our API
improves upon Hadoop by further hiding the complexity of GPU
programming, thus allowing the programmer to concentrate on
her algorithm. We also propose an accompanying refactoring
that allows the programmer to specify the GPU part of their
map computation by using very lightweight annotation.

I. INTRODUCTION

As the applications that perform computationally-intensive
tasks on large data sets (e.g., data crawled from the web)
are becoming widely used, improving their performance is
becoming a concern. Traditional CPU computation can no
longer satisfy the requirement for performance. GPGPU can
deliver higher performance and have been used in various
areas, such as scientific computing. Meanwhile, computing in
cloud through MapReduce programs is also widely adopted
since people can distribute their tasks and execute them in
parallel on very many machines.

MapReduce [1] is a programming model or software frame-
work that allows developers to process large data sets. There
are two major functions in the MapReduce: the map func-
tion takes a set of data and seperates and converts them
to another set of data tuples (usually key/value pairs); the
reduce function takes the output of the map function and
merges those data into a smaller data set. The MapReduce
framework was originally proposed by Google to support large
data analysis applications. The MapReduce applications were
intended to run on a large number of CPUs in the cloud.
However, the emergence of the commodity GPUs provides
a chance to improve the performance of MapReduce applica-
tions by running map/reduce functions on GPUs in the cloud,
since GPUs have an order of magnitude higher computation
power and memory bandwidth compared with CPUs. In this
paper, we propose an innovative approach to leverage the
power offered by GPUs in the cloud and our initial results
indicate that running MapReduce applications on GPUs can
achieve remarkable performance improvement , especially for
computational-intensive applications.

Though running MapReduce applications on the GPU of
each node in the cloud is attractive, there are some challenges.

GPU programming is hard because GPU programming lan-
guages, e.g. OpenCL or CUDA, currently lack many of the
high-level programming abstractions found in non-graphics
languages. Meanwhile, developers have to be familiar with
the GPU architecture in order to fully exploit its power.
Furthermore, integrating GPGPU with MapReduce is hard
since most MapReduce frameworks do not support interfaces
for GPU programming. Some previous work tried to solve
these challenges by either allowing the MapReduce framework
to use the map/reduce functions written in GPU program-
ming language like CUDA [2], or developing a brand-new
MapReduce framework that supporting GPUs [3]. In contrast,
we propose an approach that allows programmers to to use
the GPU without programming in CUDA or OpenCL and is
available as a library for Hadoop, a very popular MapReduce
library.

Our tool, HAPI, is developed as a library on top of
Hadoop [4] and Aparapi [5]. Hadoop is an open-source
implementation of MapReduce for Java. By connecting many
computers together and scheduling them to work in paral-
lel, Hadoop can process large volumes of data efficiently.
Hadoop provides convenient interfaces for implementing map
and reduce functions, and it internally implements some ef-
ficient, automatic algorithms for distributing the data work
across machines, so the users can quickly write and deploy
their MapReduce programs and run them in cloud. However,
Hadoop only utilizes the underlying parallelism of the CPU
cores rather than GPUs. Aparapi is an open source project
released by AMD, which aims at improving Java application
performance by offloading data parallel operations to an
OpenCL [6] capable device such as a GPU [7]. It converts
Java byte code to OpenCL at runtime and executes it on
the GPU. OpenCL is a framework for writing programs that
execute across heterogeneous platforms consisting of CPUs,
GPUs, and other processors. OpenCL provides a low-level
API that allows developers write compute kernels to lever-
age the massive parallel computing power of GPUs. It has
been adopted by Intel, AMD, Nvidia, and ARM Holdings.
Developers can implement their applications by leveraging
Aparapi interfaces and Aparapi is responsible to run their
Java applications on GPUs. If Aparapi cannot execute on
the GPU because of the limitations of the Aparapi library,
it will execute in a Java thread pool. According to the study
of [7], a sample Java based quantitative finance application
JQuantlb were able to achieve up to 20x improvement in
performance after refactoring to use Aparapi kernels. In HAPI,

we combine Hadoop and Aparapi by providing new GPU
map/reduce interfaces that encapsulate the Aparapi interfaces
for Hadoop framework. Our experiment on a computational
intensive application shows that by combining Hadoop and
Aparapi and running the MapReduce program on GPUs, we
get upto 80x speedup.

Organization: The rest of the paper is organized as follows.
We present a simple motivating example that shows how a
MapReduce application can be run on the GPU and how HAPI
works in Section II. We present our design and implementa-
tion, including the architecture of our framework and the API
we provide in Section III. In Section V, we evaluate HAPI on
a widely-used scientific application, an N-Body simulation.

II. MOTIVATING EXAMPLE

In this section, we use a small example to show how HAPI
can significantly improve performance. Suppose we have a
MapReduce program shown in Figure 1, which is used for
estimating the value of π through quasi-Monte Carlo method.
The program tries to generate points inside an 1×1 square
randomly and calculate the number of points inside and outside
the circle with the diameter 1. Thus, the value of π can be
calculated through dividing the number of points inside by
the number of points outside the circle.

In the original MapReduce program shown in Figure 1(a),
the map method takes individual <key, value> pairs as inputs,
which are used to generate random points, and create a new list
of <key, value> pairs, which are the numbers of points inside
and outside the circle. Then, the reduce function (which is not
shown in the example) can read all these output key/value pairs
generated from each mapper and calculate the total number of
points. In the original mapper, all the computation is in the
map method, which will be further executed on one node in
a cloud. Note that the run method in Figure 1(a) is used to
divide the input data.

However, we observe that the map method is computational
intensive and that the computation in the for loop can be
moved into GPU kernel to achieve higher performance. To run
the computation in a GPU kernel, we should make sure that
the data transferred to GPU is loop-independent. Note that the
statement x*x+y*y>0.25 is loop-independent, thus it can be
executed in a GPU kernel. However, since variables numOut-
side and numInside are not loop-independent, the statement
at line 21 and 23 in Figure 1(a) should not be run on GPU.
Moreover, since current version of Aparapi does not support
objects, the statements for preparing Point objects (line 16
to 19 in Figure 1(a)) should not be executed on GPU either.
Therefore, in order to run the map method on GPU, we have
to separate the calculations in the map method into three parts:
(a) pre-processing the input key/value pairs of map method to
prepare data that can be executed on GPU; (b) the GPU kernel
calculations; (c) post-processing the calculation results of GPU
and output them to the collectors from which reduce method
can fetch the data. Our HAPI defines the interfaces for these
three operations which can be implemented by developers. The
transformed MapReduce program that uses HAPI is shown in
Figure 1(b). In the pre-processing phase, we introduce a list to

Fig. 2. The architecture of HAPI

hold the coordinates of the points (line 14-24 in Figure 1(b)),
which will be further used by the GPU calculation (line 29 in
Figure 1(b)). Then, we use the output of the GPU calculation
which is a boolean value to denote whether a point is inside
or outside the circle, and calculate numOutside and numInside
in the post-processing phase (line 40-44 in Figure 1(b)).

III. IMPLEMENTATION OF HAPI

A. HAPI Architecture

HAPI is designed to facilitate the programming of computa-
tional intensive MapReduce applications. Since the objective
is to execute the MapReduce applications on GPUs of the
nodes in the cloud, HAPI should integrate the features of both
Hadoop and Aparapi, and it is built on top both Hadoop and
Aparapi.

Figure 2 shows the architecture of HAPI. The original
MapReduce applications are executed and scheduled directly
by Hadoop, while Hadoop is executed on JVM. However,
in HAPI, we insert a layer (i.e. MapperKernel) between
Hadoop and MapReduce applications. MapperKernel is a
library which extends Hadoop’s mapper and meanwhile en-
capsulates Aparapi’s GPU interface. MapperKernel provides
three interfaces for pre-processing, GPU calculating and post-
processing the data. Thus, under this architecture, the MapRe-
duce applications will leverage the interfaces provided by
MapperKernel layer, which will then invoke Hadoop and
Aparapi. Furthermore, Aparapi will compile the Java code for
GPU calculation to OpenCL code. Aparapi native library will
control the communication between CPU and GPU and exe-
cute the OpenCL code on GPU. Finally, the data is transferred
between Java MapReduce application and OpenCL through
JNI.

B. API

One approach for making GPU-executable MapReduce eas-
ier to program is to provide the user with a lightweight API
that, when implemented, automatically makes certain parts
of the computation execute on the GPU. The challenge in

2

1 p u b l i c c l a s s SimplePiMapper<K1 , V1 , K2 , V2>
2 implements MapRunnable<K1 , V1 , K2 , V2> {
3

4 p u b l i c vo id map (LongWr i t ab l e o f f s e t ,
5 LongWr i t ab l e s i z e ,
6 O u t p u t C o l l e c t o r<B o o l e a n W r i t a b l e ,
7 LongWri tab le> out ,
8 R e p o r t e r r e p o r t e r) throws IOExcep t i on {
9 long numIns ide = 0L ;

10 long numOutside = 0L ;
11

12 f i n a l P o i n t [] p o i n t s =
13 new P o i n t [s i z e . g e t ()] ;
14

15 f o r (i n t i = 0 ; i < s i z e . g e t () ; i ++) {
16 p o i n t s [i] = new P o i n t (Math . random () ,
17 Math . random ()) ;
18 f i n a l f l o a t x = p o i n t s [i] . x − 0 . 5 f ;
19 f i n a l f l o a t y = p o i n t s [i] . y − 0 . 5 f ;
20 i f (x ∗ x + y ∗ y > 0 . 2 5) {
21 numOutside ++;
22 } e l s e {
23 numIns ide ++;
24 }
25 }
26

27 o u t . c o l l e c t (new B o o l e a n W r i t a b l e (t rue) ,
28 new LongWr i t ab l e (numIns ide)) ;
29 o u t . c o l l e c t (new B o o l e a n W r i t a b l e (f a l s e) ,
30 new LongWr i t ab l e (numOutside)) ;
31 }
32

33 p u b l i c vo id run (RecordReader<K1 , V1> i n p u t ,
34 O u t p u t C o l l e c t o r<K2 , V2> o u t p u t ,
35 R e p o r t e r r e p o r t e r) throws IOExcep t i on {
36

37 / / a l l o c a t e key & v a l u e i n s t a n c e s
38 / / t h a t are re−used f o r a l l e n t r i e s
39 K1 key = i n p u t . c r e a t e K e y () ;
40 V1 v a l u e = i n p u t . c r e a t e V a l u e () ;
41

42 whi le (i n p u t . n e x t (key , v a l u e)) {
43 / / map p a i r t o o u t p u t
44 map ((LongWr i t ab l e) key ,
45 (LongWr i t ab l e) va lue ,
46 (O u t p u t C o l l e c t o r<B o o l e a n W r i t a b l e ,
47 LongWri tab le >)o u t p u t , r e p o r t e r) ;
48 }
49 }
50}

(a) Original MapReduce Program.

1 p u b l i c c l a s s GPUPiMapper ex tends
2 / / t h e f i r s t two t y p e are i n p u t key / v a l u e p a i r
3 / / t h e l a s t two t y p e are o u t p u t key / v a l u e p a i r
4 MapperKerne l2F loa tToBoolean<LongWri tab le , LongWri tab le ,
5 B o o l e a n W r i t a b l e , LongWri tab le> {
6

7 @Override
8 p u b l i c L i s t<F l o a t T u p l e 2> p r e p r o c e s s (
9 RecordReader<LongWri tab le , LongWri tab le> i n p u t ,

10 R e p o r t e r r e p o r t e r) throws IOExcep t i on {
11

12 LongWr i t ab l e key = i n p u t . c r e a t e K e y () ;
13 LongWr i t ab l e v a l u e = i n p u t . c r e a t e V a l u e () ;
14 A r r a y L i s t<F l o a t T u p l e 2> a l l G p u I n
15 = new A r r a y L i s t<F l o a t T u p l e 2 > () ;
16

17 whi le (i n p u t . n e x t (key , v a l u e)) {
18 f o r (i n t i = 0 ; i < v a l u e . g e t ()− key . g e t () ;
19 i ++)
20 a l l G p u I n . add (new F l o a t T u p l e 2 (
21 (f l o a t) Math . random () ,
22 (f l o a t) Math . random ())) ;
23 }
24 re turn a l l G p u I n ;
25 }
26

27

28 p u b l i c boolean gpu (f l o a t x , f l o a t y) {
29 re turn x ∗ x + y ∗ y > 0 . 2 5 f ;
30 }
31

32

33 @Override
34 p u b l i c vo id p o s t p r o c e s s (L i s t<Boolean> gpuOut ,
35 O u t p u t C o l l e c t o r<B o o l e a n W r i t a b l e , LongWri tab le>
36 o u t p u t)
37 throws IOExcep t i on {
38 i n t numIns ide = 0 ;
39 i n t numOutside = 0 ;
40 f o r (boolean x : gpuOut)
41 i f (x)
42 numIns ide ++;
43 e l s e
44 numOutside ++;
45 o u t p u t . c o l l e c t (new B o o l e a n W r i t a b l e (t rue) ,
46 new LongWr i t ab l e (numIns ide)) ;
47 o u t p u t . c o l l e c t (new B o o l e a n W r i t a b l e (f a l s e) ,
48 new LongWr i t ab l e (numOutside)) ;
49 }
50}

(b) MapReduce Program with HAPI.

Fig. 1. Motivation Exampe.

designing such an API lays in balancing three conflicting
forces:

1) need for flexibility: the API should be flexible enough
to allow the implementation of most, if not all, map-style
computations

2) technical limitations: automatically converting Java
code to OpenCL is challenging. APARAPI is the state
of the art in this respect but even it only recognizes a
very narrow subset of the Java language. This subset
does not include basic features like objects or dynamic
dispatch. Although APARAPI and similar tools will
improve, full recognition of the Java language is hard, if
not impossible, due to the SIMD model of computation
inherent to GPUs.

3) ease of use: this is the primary goal of our tool

Our solution, presented in Fig. 4, is an API that segregates
the part of the computation that is most beneficial to be run on
the GPU to a single method and wraps the rest of the complex
Java computation around it. The map operation is split in three
stages:

• preprocessing: in this stage, the input 〈Key, V alue〉
pairs are processed to prepare the input values for the
GPU computation. This stage corresponds to lines 8-25
in the manually transformed example (Fig.1-b).

• gpu: in this stage, the expensive part of the computation
is run on the GPU – lines 28-30 in the example.

• postprocessing: in this stage the output from the GPU
is interpreted and the results are sent to the Mapper’s
output – lines 34-49 in the example.

Figure 4 shows a small portion of the classes available to
the user. The abstract MapperKernel makes the link between
Hadoop and Aparapi. The user can extend it directly or he
can choose to extend one of its easier-to-use subclasses. The
subclasses are named after the signature of the gpu mapper.
For instance, MapperKernel2FloatToBoolean is a mapper
whose gpu() method takes a pair of float primitives and returns
a boolean. The user just needs to override the three methods
in its interface that correspond to the three aforementioned
stages, i.e. preprocess, gpu, and postprocess.

3

MapperKernel
run(…) // for MapRunnable
run() // for Kernel
…

+ List<GpuIn> preprocess(KeyIn, ValueIn)
+ List<(KeyOut,ValueOut) postProcess(GpuOut)

KeyIn, ValueIn, KeyOut, ValueOut,
GpuIn, GpuOut

run(...)
MapRunnable

KeyIn, ValueIn, KeyOut, ValueOut

+run()
Kernel

….

+ GpuIn preprocess(KeyIn, ValueIn)
+ GpuOut gpu(GpuIn)
+ (KeyOut,ValueOut) postProcess(GpuOut)

MapperKernelObjects

GpuIn -> GpuIn
GpuOut -> GpuIn

KeyIn, ValueIn, KeyOut, ValueOut
GpuIn, GpuOut

GpuIn -> 6Float
GpuOut -> 6Float ….

MapperKernel6FloatTo6Float

. . .

KeyIn, ValueIn, KeyOut, ValueOut

….

+ Tuple2 preprocess(KeyIn, ValueIn)
+ boolean gpu(float, float)
+ (KeyOut,ValueOut) postProcess(boolean)

MapperKernel2FloatToBoolean
KeyIn, ValueIn, KeyOut, ValueOut

GpuIn -> 2Float
GpuOut -> Boolean

Fig. 4. The KernelMapper API

Figure 1.b shows how the KernelMapper class can be ex-
tended to implement Pi estimation computation in the motivat-
ing example. The KernelMapper requires six type parameters
(generic parameters): the first two types are for the input
〈key, value〉 pair, the middle two are the input and output
types for the GPU mapper, and the last two are the for the
output 〈key, value〉 pair. In the case of the GPUPiEstimator
the type parameters are <LongWritable, LongWritable,

Point, Boolean, BooleanWritable, LongWritable>.
The preprocess method takes an input 〈key, value〉 pair

and outputs a collection of values that will be fed to the GPU
mapper. In our example, the preprocess takes an offset and
size and outputs a collection of random points.

The gpu method describes how each GpuIn element is
processed by the GPU. This is the part of the computation that
Aparapi will automatically convert to OpenCL. This means
that the Java code needs to conform to the Aparapi framework
limitations. The code reachable from the gpu method is limited

to:
• primitive data types
• one-dimensional array
• no object creation of array initialization
• no recursion
• no passing of the array reference
• no method calls to objects other than this

As the framework doesn’t allow method calls, it provides a
set of commonly-used mathematical functions as methods of
the Kernel class. As Kernel is an ancestor of KernelMapper,
the mathematical functions are available to the user-extended
class.

The Aparapi framework is continuously improved. The
complete and up-to-date list of features and limitations can
be found on Aparapi’s website [5].

In the example in Fig. 1.b, the gpu method verifies whether
each point is inside the circle of radius one. The computation
is very simple and conforms to Aparapi’s limitations.

4

Aparapi

List<(Key, Value)>

preprocess: (Key,Value)
⟶ Tuple<primitives>

List<(Key, Value)>

gpu: Tuple ⟶ Tuple

postprocess: Tuple<primitives>
⟶ (Key,Value)

collect

collect

collect

Fig. 3. Map operation

Going further, the postprocess method takes as an input
a List or KernelOut values and computes the final output
of the Mapper. For our example, postprocess takes a list of
booleans saying whether the points are inside the circle and
counts the points inside/outside. It then writes the results to
the Context object.

IV. RELATED WORK

Dig et al. [8] propose an automated refactoring for trans-
forming Java loops to use the ParallelArray library. Parallel-
lArray is capable of executing map, reduce and scan operation
in parallel on the CPU.

Leung et al.[9] present an extension to JikesRVM, a research
Java virtual machine, that enables it to speed up computa-
tionally intensive loops by executing them on the GPU. The
parallelization is done by transforming suitable loops from
Java bytecode to a special IR used by RapidMind, a higher-
level framework for GPGPU programming. RapidMind, in
turn, generates GPU code and executes it.

Baskaran et al. [10] and Yang et al. [11] propose separate
solutions for optimizing GPU kernels. They transform the
code to improve memory access by vectorization and memory
coalescing, do loop unrolling and tiling for data reuse, and
remap thread blocks to avoid partition camping. The best
optimization parameters are found by empirical search, i.e.,
running the program under different parameters.

Farivar et al. [2] present a heterogeneous architecture,
called MITHRA, which is a set of GPU-enabled nodes running
on a MapReduce cluster. They demonstrate that GPU accel-
erated MapReduce clusters can achieve significant speedup
(254x). The MITHRA architecture runs MapReduce programs
that have GPU-executable map functions written in CUDA.

However, our project provides an automatic way to exe-
cute MapReduce programs written in Java on heterogeneous
MapReduce clusters, without requiring the user to manually
translate the map and reduce functions to CUDA.

He et al. [3] developed a GPU based MapReduce frame-
work, called Mars. Their vision is to hide the programming
complexity of the GPU, while programmers take advantage
of ease-of-use of the MapReduce. Although they indicate the
integration of Mars and Hadoop as a future work, their work
is similar with ours in terms of their vision that aims to hide
the GPGPU complexity.

Jacob et al. [12] provides an abstract APIs that allow pro-
grammers to implement GPGPU programs by hiding GPGPU
complexity. They also provide a IDE tool that makes easy to
use their abstract APIs. Their APIs and tool supports both
OpenCL and CUDA. While this work is not related with
MapReduce framework, it is important to note that there are
recent projects aiming to hide GPGPU complexity.

Lee et al. [13] present a compiler framework for auto-
matic source to source translation of OpenMP programs to
CUDA based programs. They implemented the translation
steps for Cetus compiler infrastructure that allows source-
to-source transformations for C programs. While this project
automatically allows the programmer to take advantage of
GPU power in their OpenMP programs, our project will
allow the programmer to use GPU power in their MapReduce
programs in the same manner.

V. EVALUATION

In this section, we evaluate our GPU-based MapReduce
framework in comparison with its CPU-based counterpart,
which has a typical Mapper class.

Our experiments were performed on a server machine with
Nvidia GeForce GTX275 GPU and Intel Core i7 processor
running Ubuntu 10.10. The GPU consists of 240 stream
processors and the frequency of the core clock is 633MHz.
In contrast, the CPU has four cores running at 2.67GHz. The
main memory is 3GB, and the device memory of the GPU is
896MB.

To integrate HAPI with Hadoop, the developer just needs
to add two parameters to Hadoop’s configuration file:
• -Djava.library.path= location of aparapi

native library

• mapred.map.tasks=1.
The first parameter tells Hadoop where the Aparapi native
library resides and the second parameter limits the number
of mapper tasks to one per node. If Hadoop executes several
GPU mapper tasks in parallel, the tasks concurrently initiate
GPU calls and this can cause device unavailability errors.

To evaluate the efficiency of HAPI, we ask two research
questions:

1) Does using HAPI decrease complexity?
2) Does using HAPI improve speed?
To answer these questions, we evaluate HAPI on a simple

implementation of an N-Body simulation. The implementation
is straightforward, leading to O(n2) complexity.

5

Sheet1

Page 1

Size Speedup
 4k 7.1 7.1 1
 8k 7.1 7.1 1
 16k 10.2 7.1 1.4
 32k 19.1 7.1 2.7
 64k 64.2 7.1 9
 128k 271.9 10.2 26.7
 256k 1047.4 13 80.6

 4k 8k 16k 32k 64k 128k 256k
1

10

100

Speedup

bodies

sp
ee

du
p

(lo
g)

Fig. 5. Speed up - HAPI over CPU

A. Does using HAPI decrease complexity?

We have implemented N-Body in two ways: one is with
a typical CPU-based Mapper and one is with a HAPI-based
Mapper. Both implementations use the same code conventions.
The CPU-based Mapper has 84 lines of source code while
theHAPI-based Mapper has 62 lines of source code. HAPI
decreases the code complexity by hiding the low-level GPGPU
constructs. At least in this case, HAPI makes the code as least
as compact as the CPU implementation.

B. Does using HAPI improve speed?

We executed both the CPU and the GPU-based implemen-
tations with exponentially increasing data sizes ranging from
4k to 256k. Figure 5 shows the speed-up that we get from
these inputs. As the number of bodies increases, the speed-up
also increases at nearly exponential rate because the N-Body
has O(n2) complexity.

Even though our machine uses a typical graphics card,
we get 80x speed-up with 256k bodies. Table I shows the
execution time and speedup from the experiments. For the
small inputs, between 4k and 16k, the execution time for GPU-
based Mapper is roughly same as for the CPU-based one. The
reason is that the overhead of Hadoop MapReduce framework
is around 7 seconds.

VI. DISCUSSION

Hybrid CPU-GPU mapper. In addition to powerful GPU’s,
cloud nodes also have many CPU cores. In the current imple-
mentation, HAPI uses only one CPU core for preparing the
data for the GPU and leaves the CPU cores idle. An idea worth
exploring is using both the CPUs and GPU on the machine in

TABLE I
EXPERIMENT RESULTS

Bodies CPU runtime (s) HAPI runtime (s) Speed-up

4k 7.1 7.1 1
8k 7.1 7.1 1

16k 10.2 7.1 1.4
32k 19.1 7.1 2.7
64k 64.2 7.1 9.0

128k 271.9 10.2 26.7
256k 1047.4 13 80.6

parallel. The challenge in this approach would be balancing
the work to achieve good utilization of all processing units.

Evolving Aparapi. In the current implementation, HAPI
tries to provide the programmer with an elegant API while
working within the bounds of Aparapi’s subset of Java. Fork-
ing or evolving Aparapi can provide many opportunities for
improving the API. For example, Aparapi does not currently
support boxed primitives. Adding this capability would allow
HAPI to significantly reduce the number of MapperKernel

subclasses while retaining the same ease of use and flexibility.
Automated hybrid execution Another ambitious goal

would be to execute MapReduce programs on heterogeneous
architectures without user-assistance. In this approach, the
GPGPU complexity would be completely hidden from the
programmer and he could write the Mapper class in the
classical Hadoop fashion.

VII. CONCLUSION

Using GPGPUs in the cloud comes with the promise of great
performance improvements, but it is also very hard to program.
In this paper we present HAPI, a tool that allows programmers
to write MapReduce mappers that delegate computationally-
intensive parts to the GPU by using Java, without program-
ming in OpenCL or CUDA.

Our preliminary evaluation suggests that using HAPI can
provide very good speedup, up to 80x, while keeping the
program complexity low.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” in Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume 6. Berkeley,
CA, USA: USENIX Association, 2004, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251264

[2] R. Farivar, A. Verma, E. Chan, and R. Campbell, “Mithra: Multiple data
independent tasks on a heterogeneous resource architecture,” in Cluster
Computing and Workshops, 2009. CLUSTER ’09. IEEE International
Conference on, 31 2009-sept. 4 2009, pp. 1 –10.

[3] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a
mapreduce framework on graphics processors,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, ser. PACT ’08. New York, NY, USA: ACM, 2008, pp. 260–
269. [Online]. Available: http://doi.acm.org/10.1145/1454115.1454152

[4] “Hadoop,” http://hadoop.apache.org/.
[5] “Aparapi,” http://developer.amd.com/zones/java/aparapi/Pages/default.aspx.
[6] “OpenCL,” http://www.khronos.org/opencl/.
[7] “Leveraging aparapi to help improve financial java application perfor-

mance.”
[8] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. Johnson, “Relooper:

refactoring for loop parallelism in java,” in Proceedings of the
24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications, ser. OOPSLA ’09.
New York, NY, USA: ACM, 2009, pp. 793–794. [Online]. Available:
http://doi.acm.org/10.1145/1639950.1640018

6

[9] A. Leung, O. Lhoták, and G. Lashari, “Automatic parallelization for
graphics processing units,” in Proceedings of the 7th International
Conference on Principles and Practice of Programming in Java, ser.
PPPJ ’09. New York, NY, USA: ACM, 2009, pp. 91–100. [Online].
Available: http://doi.acm.org/10.1145/1596655.1596670

[10] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “A compiler framework for optimization
of affine loop nests for gpgpus,” in Proceedings of the 22nd annual
international conference on Supercomputing, ser. ICS ’08. New
York, NY, USA: ACM, 2008, pp. 225–234. [Online]. Available:
http://doi.acm.org/10.1145/1375527.1375562

[11] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A gpgpu
compiler for memory optimization and parallelism management,”
in Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, ser. PLDI ’10.
New York, NY, USA: ACM, 2010, pp. 86–97. [Online]. Available:
http://doi.acm.org/10.1145/1806596.1806606

[12] F. Jacob, D. Whittaker, S. Thapaliya, P. Bangalore, M. Mernik, and
J. Gray, “Cudacl: A tool for cuda and opencl programmers,” in High
Performance Computing (HiPC), 2010 International Conference on, dec.
2010, pp. 1 –11.

[13] S. Lee, S.-J. Min, and R. Eigenmann, “Openmp to gpgpu: a
compiler framework for automatic translation and optimization,” in
Proceedings of the 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming, ser. PPoPP ’09. New
York, NY, USA: ACM, 2009, pp. 101–110. [Online]. Available:
http://doi.acm.org/10.1145/1504176.1504194

7

