RIGHTS

ReLooper: Refactoring for Loop Parallelism in Java

Danny Dig

University of Illinois
dig@cs.uiuc.edu

Marius Minea

Politehnica University of Timisoara
marius@cs.upt.ro

Abstract

In the multicore era, sequential programs need to be refactored for
parallelism. The next version of Java provides ParallelArray, an
array datastructure that supports parallel operations over the array
elements. For example, one can apply a procedure to each element,
or reduce all elements to a new element in parallel. Refactoring
an array to a ParallelArray requires (i) analyzing whether the
loop iterations are safe for parallel execution, and (ii) replacing
loops with the equivalent parallel operations. When done manually,
these tasks are non-trivial and time-consuming. This demo presents
RELoopPER, an Eclipse-based refactoring tool, that performs these
tasks automatically. Preliminary experience with refactoring real
programs shows that RELoopEer is useful.

Categories and Subject Descriptors D.1.3 [Software]: Concur-
rent Programming—Parallel Programming; D.2.3 [Software En-
gineering]: Coding Tools and Techniques—Program Editors

General Terms Algorithms, Design

Keywords Refactoring, program analysis, program transforma-
tion, parallelism and concurrency

1. Introduction

In the multicore era, unless programmers refactor the existing se-
quential programs for parallelism, they will not benefit from the
underlying parallel processors. Refactoring for parallelism is non-
trivial, because the refactored code needs to satisfy two conflicting
goals: it needs to be thread-safe (i.e., run correctly when executed
under multiple threads) and scalable (i.e., performance continues
to improve when adding more cores).

The key to scaling performance is to use fine-grained paral-
lelism. Java will include the ParallelArray framework [1], a spe-
cial kind of array that provides fine-grained parallel operations. For
example, one can apply a procedure to the elements of an array,
map elements to new elements, or reduce all elements into a single
value like a sum. The framework efficiently executes these parallel

Copyright is held by the author/owner(s).

OOPSLA "09 October 25-29, 2009, Orlando, Florida, USA.
ACM 978-1-60558-768-4/09/10

Ay

Mihai Tarce

Politehnica University of Timisoara
mihai.tarce@cs.upt.ro

793

Cosmin Radoi

Politehnica University of Timisoara
cosmin.radoi@cs.upt.ro

Ralph Johnson

University of Illinois
johnson@cs.uiuc.edu

operations by splitting the computations on array elements among a
pool of worker threads, and relying on a runtime library to balance
the work among the processors in the system.

To refactor an existing array into a ParallelArray, the pro-
grammer constructs it by using factory methods (e.g., by copy-
ing elements from other arrays). Then the programmer identifies
the loops that iterate over all the array elements and she analyzes
each loop to infer its intent (e.g., the loop reduces all elements to a
value). Next, she replaces the loop body with a call to the equivalent
parallel operation (e.g., reduce). The parallel operation takes an
element operator as an argument and executes it on each element.
Since Java does not support anonymous functions (i.e., lambda ex-
pressions), the programmer needs to encapsulate the operator in-
side an anonymous class, by subclassing one of the 132 operator
classes, and override the op method.

In addition, since ParallelArray assumes that all parallel
computations do not interfere with each other, it runs them without
any synchronization. It is the programmer’s responsibility to verify
that indeed the loop iterations do not have conflicting memory
accesses. This analysis and code rewriting is non-trivial, and time-
consuming.

We have implemented a refactoring tool, RELooper, that auto-
mates the safety analysis and the rewriting of code. RELoOPER is
integrated with Eclipse’s refactoring engine, so it offers all the con-
venient features of a refactoring engine: previewing the changes,
preserving the formatting, undoing changes, etc. To use RELOOPER,
the programmer selects an array and chooses CoNVERTTOPARALLELAR-
ray from the refactoring menu.

2. The Refactoring Tool

Figure 1 shows a preview of the changes that ReLoorer applies
to a small program that works with an array of Complex num-
bers. A complex number has the form a + bi where a is the
real part, and b is the imaginary part. The first loop in method
ComplexTest.test () initializes the array elements using the fac-
tory method createRandom(). The second loop iterates over all
the array elements and computes the square of each complex num-
ber. The third loop adds all the numbers and stores the result in the
sum variable.

Transformations. ReLoorer changes the type declaration of
numbers into a ParallelArray of Complex objects. Then it re-
places the code that allocates storage for the array with code that
creates a ParallelArray with the same capacity, and specifies the
base element type and the pool of worker threads that will be used
at runtime (defaultExecutor () arranges to use most of the pro-
cessors available).

RIGHTS

Changes to be performed

= [¥]45 TestComplex.java - TestProject/src/parallelArray

[¥] TestComplex.java

original Source
b = 1maginary;

public static Complex createRandom(){
return new Complex(Math.random(}, Math.randem(});
public void makeSquare(){
this.a = a*a - b¥b;
this.b = 2#¥a*h;

¥

public class TestComplex {
private Complex[] numbers;

public void test() {
numbers = new Complex[10000000]
for (int 1 = 0; 1 = numbers.length; 1++) {
numbers[i] = Complex.createRandom()

for (int 1 = 0; 1 < numbers.length; 1++) {
numbers[i].makesquare();

]

Complex sum = new Complex(@,0)
for (int 1 = ©; 1 = numbers.length; 1++) {
sum = new Complex(sum.a + numbers(il.a, sum.b + numbers(i].b);

]

Refactored Source

publ.

ic class TestComplex {
private ParallelArray<Complex= numbers;

public void test() {
numbers = ParallelArray.create (10000000, Complex.class, ParallelArray
.defaultExecutor());
numbers. replacewi thGeneratedvalue(new Ops.Generator<Complex=>() {
public Complex op() {
Complex elt;
elt = Complex.createRandom();
return elt;
1
i

numbers.apply (new Ops.Procedure<Complex=(] {
public void op(Complex elt) {
elt.makeSquare();
1
;

Complex sum = new Complex(0,0)
sum = numbers.reduce(new Ops.Reducer<Complex=>() {
public Complex op(Complex sum, Complex elt) {
sum = new Complex(sum.a + elt.a, sum.b + elt.b);
return sum;
3

}, sum);

(«TT

ID]

[(=mee [comes []

Figure 1. Using RELOOPER to convert an array of Complex numbers to a ParallelArray. The screenshot shows a preview of the changes,
with the original code on the left and the refactored code on the right.

For each loop that iterates over the array elements, RELOOPER in-
fers the intent of the loop and replaces it with the equivalent parallel
operation from ParallelArray. In our example, the first loop ini-
tializes the array elements, so RELoorEr replaces it by invoking the
replaceWithGeneratedValue operation and passes an operator
implemented as an anonymous Generator class. RELOOPER Over-
rides the op() method to create objects like in the original code.
ReLoorer correctly replaces the last two loops with the appropriate
operations and generates the anonymous classes that encapsulate
the operators.

Preconditions. ReLoorer performs the following program ana-
lyses to determine whether the refactoring can be applied safely.
First, it checks that a loop iterates over all elements of the array,
i.e., from the first element to the last, without skipping elements.

Second, the analysis determines that there are no loop-carried
dependencies between iterations, i.e., each iteration processes only
one element, and the variables in one iteration do not depend on
values coming from other iterations. Even though the sum vari-
able is a loop-carried dependency, the analysis allows it because
this dependency is eliminated when sum becomes the accumulator
variable for the reduce operation (internally, the reduction creates
fresh sum variables, and accumulates them in a final step).

Third, the analysis determines whether the loop iterations have
conflicting memory accesses. As one step of this check, our ana-
lysis determines that the array elements are unique, i.e., the array
does not contain duplicate objects. Processing duplicate objects in
parallel could introduce data races. To check the uniqueness invari-
ant, the analysis builds upon a context-sensitive, flow-insensitive,
demand-driven pointer analysis [2] implemented in WALA [3]. Our
custom analysis determines that elements created in different iter-
ations are indeed unique. For example, it determines that different

Ay

794

calls to createRandom() return unique objects, and that subse-
quent loops maintain the uniqueness invariant.

3. Conclusions

Refactoring tools can help programmers retrofit parallelism into se-
quential code. This demo presents RELOOPER, a tool for parallelizing
loops over arrays. Our preliminary experience with refactoring two
large NLP applications and other medium-size applications shows
that RELoorEer is useful: on average, the refactoring finishes in less
than 30 seconds, and the results are correct. As we are currently
adding more analysis to check that updates to shared state among
loop iterations are not conflicting, the main challenge remains to
keep the refactoring both precise and fast enough to be used in an
interactive mode.
RELooPER can be downloaded from its homepage:

http://refactoring.info/tools/ReLooper

4. Acknowledgments

This work is partially funded by Intel and Microsoft through the
UPCRC Illinois, and a DOE grant ER25752. Cosmin and Mihai
did a part of this work as undergraduate summer interns at the
Information Trust Institute at the University of Illinois.

References

[1] D. Lea. ParallelArray package extral66y. http://gee.cs.oswego.
edu/dl/concurrency-interest/index.html, 2009.

[2] M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-driven points-
to analysis for Java. In Proceedings of OOPSLA, 2005.

[3] WALA: T. J. Watson Libraries for Analysis. http://wala.sf.net.

