
c© 2018 by Cosmin Rădoi. All rights reserved.

TOWARD AUTOMATIC PROGRAMMING

BY

COSMIN RĂDOI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Grigore Ros,u, Chair and Director of Research
Professor David Padua
Adjunct Professor Danny Dig
Manu Sridharan, Uber

Abstract

Programming, the act of creating and changing software source code, should be a
collaborative process between humans and computers. This dissertation shows a general
approach and two techniques that bring us closer to this goal. The general approach
is inspired by human programmers: they learn how to transform code by looking at
similar past transformation instances, then they change new code by stringing together
several fine-grained transformations.

First, we give a technique for inferring abstract program transformations from concrete
code examples. The transformations are expressed as formal rules in a term rewriting
language with contexts, and they are inferred from examples via a novel anti-unification
algorithm. For evaluation, we use the technique to successfully infer 15 JavaScript
linting rules.
Second, we give a technique for searching through compositions of program trans-

formations to satisfy a goal. The search is an evolutionary algorithm with the fitness
function defined over the code and the code transformations as mutations. For evalua-
tion, we apply the technique to the problem of automatically translating imperative,
sequential programs to functional MapReduce programs. The algorithm successfully
finds efficient MapReduce implementations for programs with complex indirect accesses,
such as WordCount.

ii

To Codrut,a and my parents.

iii

Acknowledgments

I thank my parents for raising me to believe in myself, for nurturing my passion for
mathematics, and for encouraging me to pursue computer science.
I thank my wife Codrut,a for being there for me through thick and thin, wherever

our path takes us.
I thank my advisor Grigore Ros,u for creating the K framework, the foundation of

this dissertation, for giving me the freedom to explore various ideas, and for working
together and encouraging me to develop the ideas into principled structures.
I thank the rest of my dissertation committee, Manu Sridharan, Danny Dig, and

David Padua, for their feedback and insightful suggestions for improving my research.
I especially thank Manu Sridharan for his trust in my ability to find and implement
solutions, and for his gentle guidance throughout.

The seeds of this research have been planted during my internships at IBM Research
– T.J. Watson and at Samsung Research America. I thank my other collaborators there,
Stephen Fink and Rodric Rabbah from IBM, and Satish Chandra from Samsung, for
giving me the opportunity to work on hard problems, and for their valuable suggestions
and help over the years.
I thank my colleagues and collaborators for making research fun. In particular,

I thank Semih Okur, Darko Marinov, Adrian Nistor, Yu Lin, Alex Gyori, Rajesh
Karmani, Mihai Codoban, Caius Brîndescu, Loránd Szakács, Milos Gligoric, Radu
Mereut,ă, Brandon Moore, Daejun Park, Owolabi Legunsen, Yi Zhang, Shijiao Yuwen,
Michael D. Adams, Dwight Guth, Traian S, erbănut,ă, Manasvi Saxena, Ali Kheradmand,
Xiaohong Chen, Lucas Peña, and Everett Hildenbrandt.

I especially thank Marius Minea, for showing me that research exists, Danny Dig, for
teaching me how to do academic research, and Andrei S, tefănescu, for working together
so well, on top of being a good friend.
I would like to thank my friends outside computer science for distracting me from

research, thus keeping me sane. In particular, I thank Yulia, Luisa, David, Iulia, Monika,
James, Ileana, Adina, Nisha, Maria, and Kim.

iv

I thank IBM for the PhD Fellowship that supported a year of my work, and the
National Science Foundation for the grants that supported my research over the years
(CCF-1646559, CCF-1218605, and CCF-1318191).

v

Table of Contents

Chapter 1 Introduction . 1
1.1 Evolutionary Program Transformation 3
1.2 Generalization-based Program Transformation Inference 4
1.3 Program Transformations as Matching Logic Formulae 5
1.4 Contributions . 5

Chapter 2 Background . 7
2.1 Matching Logic Syntax . 7
2.2 Matching Logic Semantics . 8
2.3 Predicate Patterns . 10
2.4 Configuration Abstraction . 10
2.5 Unification and Anti-Unification . 11

Chapter 3 Evolutionary Program Transformation 13
3.1 Problem . 13
3.2 Our Approach . 14
3.3 Case Study: Translating to MapReduce 15
3.4 Motivating Example . 16
3.5 Mold System Overview . 22
3.6 Generating Functional IR . 23
3.7 Translation System . 29
3.8 Optimization Rules . 30
3.9 Implementation . 43
3.10 Evaluation . 44
3.11 Related Work . 50

Chapter 4 Inferring Program Transformations 54
4.1 Problem . 54
4.2 Our Approach: Anti-Unification . 59
4.3 Rewriting Language . 61
4.4 Transition System . 65
4.5 Preliminary Inference Rules . 66
4.6 Inference Rules for Contexts . 69
4.7 Rules for Renaming and Context Flattening 70
4.8 Extracting Solutions . 72
4.9 Generalizing Rewrite Rules . 72
4.10 Inferring Program Transformations . 73

vi

4.11 Optimizations . 74
4.12 Correctness of Generalization Algorithm 76
4.13 Evaluation . 77
4.14 Related Work . 83

Chapter 5 Conclusion and Future Directions 85

References . 87

WordCount . 93

vii

Chapter 1

Introduction

Programming, the act of creating and changing software source code, is now done
almost exclusively by human programmers, with little to no assistance from comput-
ers. Computers mainly help with translating programs from high-level programming
languages to lower-level machine instructions, and with optimizing these lower-level
representations. Translation and low-level optimization are a good fit for computer
algorithms because their input and output are well defined.

Program transformation is at the core of software development yet, paradoxically, it
remains mostly a manual process. While developers do occasionally write new code
from scratch, most development time is spent changing existing code in various ways,
from simple bug or code style fixes to extensive refactoring or API changes. In most of
these cases, developers transform programs by editing their textual representation, i.e.,
the code, by hand. Many of these transformations are repetitive and tedious, and thus
error-prone.
Ideally, a program transformation system would aid the developer by translating

their abstract intent into multiple textual changes that are applied, repetitively, across
the code base. Refactoring tools are the first step toward this goal, but they are limited
to a small set of predefined transformations, and are often hard to configure.
Automating program transformations is challenging. Even representing a program

transformation is not trivial. A patch expressed as a textual diff, like those used by
source version control tools, is littered with syntactic details, so it is highly unlikely it
will fit any new context. Likewise, recording a sequence of AST edits and generalizing
from them can be fragile [1, 2, 3]. Regular expression search-and-replace is capable
of representing changes applicable in multiple places, but regular expressions have no
knowledge of the underlying structure of the code (i.e., they are applied to text, not the
AST) or of the context in which they are matched. Furthermore, they are notoriously
hard to write, so their use is usually limited to small transformations. Scripts which
manipulate the AST directly are powerful but require that the developer understands
the concept of an AST, knows how to use an AST-manipulation library, and is willing

1

to write code in order to make a change to her program.
A principled way to manipulate programs is using term rewrite systems [4]. Term

rewrite systems allow expressing powerful abstract syntax tree (AST) transformations
via simple, concise rules. Unfortunately, the lack of developer-friendly tools has limited
their use outside academia. Furthermore, even with easy-to-use tools, they still require
that the developer to learn a term rewriting language and be willing to write rewrite
rules by hand.

We propose a general approach for automating source-to-source program transforma-
tions and give two techniques for implementing it. Our focus is not on synthesizing or
otherwise creating new code from scratch, but on transforming existing code.
Our approach is inspired by how developers transform code. Often the first step is

to look at similar transformations (from the same codebase or even external sources,
e.g., StackOverflow) in order to form a mental model of the transformation. Then the
programmer applies a similar transformation to new code. The programmer strings
together multiple such transformations to achieve a higher-level goal. They may skip
the learning phase if they already know a particular transformation from previous
experience. Finally, it is often the case the programmer does not find the right solution
on the first try. In these cases, they might backtrack some transformation steps and try
a different path, i.e., the programmer searches for the solution that satisfies their goal
(e.g., passing all tests or fixing a bug).

Our approach for automating program transformations follows the above process,
and consists of two techniques:

1. Evolutionary Program Transformation. In most real-world scenarios, the
program that satisfies a particular goal is not reached in a single program trans-
formation step. The goal is usually satisfied by a sequence of several different
transformations. For the automated system to discover a sequence of steps that
satisfies a goal, we propose a technique that searches through the possibilities
using an evolutionary algorithm [5].

2. Generalization-based Program Transformation Inference. The evolution-
ary algorithm above requires, as input, a set of predefined abstract program
transformations. The transformations are abstract in the sense that they are
general rules applicable to new code. In particular, our transformations are rewrite
rules [4] in a variant of matching logic [6, 7]. The difficulty is that writing such
rules requires the programmer to learn our rewriting language, something that

2

most programmers might not be willing to do. To alleviate this issue, we propose
a technique for automatically inferring the program transformation rules from
concrete code examples. The technique is based on our novel anti-unification
algorithm, which extends the approach of Alpuente et al. [8] with contexts [9] and
rewrite symbols [4].

In practice, we envision the programmers using the evolutionary system to generate
complex concrete program transformations that satisfy various goals, and using the
inference algorithm for creating new program transformation steps from previous code
examples.

1.1 Evolutionary Program Transformation

We discovered the need for an evolutionary approach to composing program transfor-
mation while working on the problem of automatically translating sequential, imperative
code to functional, parallel MapReduce [10] (see Section 3.3 for details on MapReduce).
Such a transformation helps by reducing costs when re-targeting legacy sequential
code for MapReduce. Furthermore, a translator simplifies the process of targeting
MapReduce in new programs: a developer can concentrate on sequential code, letting
the translator handle the parallelization.

The most challenging part of the translation is finding a sequence of atomic transfor-
mation steps that lead to an efficient MapReduce program.
We first attempted to solve this problem in the traditional way, by trying to make

a unique “good” choice between transformations. When the system was not making
the right transformation choice, we tried to employ more powerful analysis to generate
heuristics that work in most cases. We mostly failed on this path because we could not
figure out powerful enough heuristics to obtain consistently good results.
Our proposal builds upon techniques developed in the evolutionary algorithms [5]

field, and is most akin to genetic programming [11]. The main differentiating aspect
from genetic programming is that program transformation mutation operators have
strong, specific semantic meaning — see Section 3.4 for an example. Furthermore,
there is no crossover operator in the proposed system, though integrating crossover is a
possible future extension.
The evolutionary approach arose from dropping the requirement to make a unique

choice at each step. We thus allowed our system to explore the space of semantically

3

equivalent programs obtained by applying multiple program transformation rules at
each step.

We have implemented our techniques in Mold, a tool that transforms Java programs
into Scala programs. The resulting programs can be executed either on a single comput-
ing node via parallel Scala collections, or in a distributed manner using Spark, a popular
MapReduce framework [12, 13]. Mold leverages the WALA analysis framework [14] to
generate Array SSA and implements a custom rewriting engine using the Kiama [15]
library. In an experimental evaluation, we tested Mold on a number of input kernels
taken from real-world Java and MapReduce benchmarks. In most cases, Mold success-
fully generated the desired MapReduce code, even for code with complex indirect array
accesses that cannot be handled by previous techniques. To our knowledge, Mold is
the first to automatically translate sequential implementations of canonical MapReduce
programs like WordCount into effective MapReduce programs.

1.2 Generalization-based Program Transformation

Inference

This work started from the observation that it would be helpful for developers to have
a tool that, given several examples, infers a program transformation – in this case one
or more term rewriting rules. Andersen and Lawall [16, 17] have observed this need as
well and they have proposed a tool for generalizing several patches into a transformation
represented as a composition of rewriting rules. Unfortunately, their rewriting language
is not very expressive. As a consequence, more complex transformations need to be
expressed as sequences, leading to fragility (see Section 4.1).
We propose a novel approach (and accompanying system) for inferring, from code

examples, program transformations expressed as term rewrite rules in a rich language
with context variables and associative function symbols. Rewrite rules with context
variables are capable of matching over arbitrary contexts, like in Felleisen and Hieb [9].
They are supported by several modern rewriting/reduction engines specialized for
programming language syntax and transformation, such as PLT-Redex [18], K [19], and
Spoofax [20]. The contexts allow matching a pattern anywhere within a term which,
in many cases, replaces the need to have a transformation expressed as a sequence
of transformations, as is the case for other approaches [1, 2, 3, 16, 17, 21, 22]. For
instance, an anywhere context can be used to match an assignment only when appearing

4

anywhere within the condition of an if statement (see the motivating example in
Section 4.1). The associative function symbols allow matching particular instructions
in a block, as well as formal and actual parameters for invocations. Without these
rewrite-language features, our system would not be able to express the fixes for many
warning types reported by ESLint [23], the linting tool we base our benchmark suite on.

Our system takes as input several concrete code transformation example snippets (i.e.,
before and after code snippets) and outputs one general, developer-readable rewrite
rule that generalizes all input examples. More precisely, when applied to the before
of any of the input examples, the rule will generate precisely the corresponding after.
Furthermore, the rule will apply in new, similar contexts.

We evaluate our approach on the problem of learning fixes for linting tool warnings,
and show that it effectively infers powerful, general rewrite rules.

1.3 Program Transformations as Matching Logic

Formulae

The two techniques presented in this thesis are based on expressing program trans-
formations as term rewrite rules. In particular, the program transformations can be
seen as formulae in specialized subsets of Matching Logic [7].
Matching Logic, described in more detail in Section 2, is a solution for using the

operational semantics of programming languages for program verification. In Matching
Logic formulae are interpreted as sets of values in the model, and the formulae are kept
small using configurations and their abstraction.
This work stems from the observation that, while Matching Logic and K are meant

to simplify program verification, they also provide an excellent theoretical framework
and implementation for source-to-source program transformation. In particular, rewrite
rules are just implications in Matching Logic, our contexts are a runtime generalization
of configuration abstraction, and anti-unification is simply a disjunction of formulae.

1.4 Contributions

This dissertation proposes a general approach to program transformation and makes
the following contributions:

5

1. Imperative code to Lambda with fold via Array SSA form. We show a
way to convert array-manipulating imperative programs to a functional represen-
tation by using their Array SSA form.

2. Evolutionary Program Transformation. We present an evolutionary algo-
rithm for exploring the broad space of possible transformations generated by a
set of abstract program transformation rules.

3. Indirect array accesses to groupBy operations. We present a rewrite rule
for effectively handling complex indirect array accesses by converting them to
groupBy operations.

4. Imperative programs to MapReduce. We give a tool for translating impera-
tive programs to functional MapReduce programs, and an experimental evaluation
showing the tool’s ability to handle complex input programs beyond those in
previous work.

5. Generalization algorithm for rewrite rules. We introduce a technique and
algorithm for generalization/learning of rewrite rules from multiple concrete code-
change examples. The algorithm generalizes from term patterns with associative
symbols, rewrite symbols, and context variables.

6. Learning linting rules from examples. We give an optimized implementation
of the generalization algorithm together with a thorough evaluation showing the
feasibility of the approach on learning fixes for linting tool warnings.

6

Chapter 2

Background

Matching Logic [7] is a variant of first-order logic specialized to specifying and
reasoning about program structure via pattern matching.
Matching Logic emerged as a solution to using the operational semantics of pro-

gramming languages for program verification. Operational semantics are easy to define
and understand, but they have been perceived as too low-level to be used for program
verification. The alternate solutions, Hoare [24] and dynamic [25] logics, are higher-level
but they need to be defined separately and require additional effort to prove soundness
with respect to the language’s operational semantics. Matching Logic and its implemen-
tation, the K framework [26], overcome these obstacles by interpreting formulae as sets
of values in the model, and by, respectively, using configurations and their abstraction
to separate concerns and keep formulae small.

2.1 Matching Logic Syntax

We assume the reader is familiar with first-order logic, functions, and sets. Matching
Logic is sorted but, as sorts are not relevant to this dissertation, we introduce an
unsorted variant here.

Definition 2.1 Let Σ be a signature of symbols, and let V ar be an infinite set of
variables. Matching logic Σ-formulae, or Σ-patterns, are defined inductively as:

ϕ ::“ x P V ar // variable
| σpϕ1, ..., ϕnq with σ P Σ // structure
| ϕ // complement
| ϕ^ ϕ // intersection
| Dx.ϕ with x P V ar // binding

We call Σ-patterns just patterns, or formulae, when Σ is clear from the context.

7

The syntax allows expressing meaningful patterns, and it is at the same time succinct
and easy to read. The patterns are constructed by nesting variables, concrete syntax,
and logical connectors. This allows extracting relevant information from deep within
structures, as well as constructing new structures. The complement, intersection, and
binding patterns allow reasoning using logical propositions and formulae.
Building upon the above, we derive the following FOL-like constructs:

J ” Dx.x // all terms
K ” J // no terms

ϕ1 _ ϕ2 ” p ϕ1 ^ ϕ2q // disjunction
ϕ1 Ñ ϕ2 ” ϕ1 _ ϕ2 // implication
ϕ1 Ø ϕ2 ” pϕ1 Ñ ϕ2q ^ pϕ2 Ñ ϕ1q // equivalence

@x.ϕ ” pDx. ϕq // universal quantification

(2.1)

J is matched by all terms, K is matched by no terms, ϕ1 _ ϕ2 is matched by
terms matching ϕ1 or ϕ2, etc. For example, assignmentpx, y ^ xq is matched by all
assignment structures where the assigned term is different from the assignee.

2.2 Matching Logic Semantics

Intuitively, patterns are matched by other terms that have more structure. Still,
it is often the case that background theories or domains are layered upon the purely
structural match. For example, if we layer the theory of integers and consider that
addition is commutative, we can say that 1 ` 4 matches x ` 3 with the substitution
x “ 2.

Definition 2.2 A matching logic Σ-model consists of:

(1) A non-empty set M.

(2) A function σM : Mn Ñ PpMq for each symbol σ P Σ called the interpretation
of σ in M .

Symbols are interpreted as relations. The usual Σ-algebra models are a special
case of matching logic models where |σMpm1, . . . ,mnq| “ 1 for any m1, . . . ,mn P M .
Similarly, for partial Σ-algebra models, |σMpm1, . . . ,mnq| ď 1. The undefinedness of
σM is captured with σMpm1, . . . ,mnq “ H.

8

We use the same notation when extending σM to argument sets:

σMpA1, . . . , Anq “
ď

tσMpa1, . . . , anq|a1 P A1, . . . , an P Anu
where A1 ĎM, . . . , An ĎM .

(2.2)

Definition 2.3 Given a model M and a map ρ : V ar Ñ M , called an M-valuation,
let its extension ρ̄ : PatternÑ PpMq be inductively defined as follows:

• ρ̄pxq “ tρpxqu, for all x P V ar
• ρ̄pσpϕ1, . . . , ϕnqq “ σMpρ̄pϕ1q, . . . , ρ̄pϕnqq, for all σ P Σ, where “z” is set difference
• ρ̄p ϕq “Mzρ̄pϕq, for all ϕ P Pattern

• ρ̄pϕ1 ^ ϕ2q “ ρ̄pϕ1q X ρ̄pϕ2q, for all ϕ1, ϕ2 P Pattern

• ρ̄pDx.ϕq “ Ť

aPM ρra{xspϕq, where ρra{xs is ρ extended with a mapping of x to a.
If a P ρ̄pϕq then we say that a matches ϕ with witness ρ.

The definition above gives us the equivalent of traditional term matching. Given a
pattern (i.e., a term with variables) ϕ and a ground term model M , then a ground
term a matches ϕ iff there exists a substitution ρ such that ρpφq “ a. We can regard
patterns as predicates (see Section 2.3), where the equivalent of “predicate ϕ holds in a”
is “a matches pattern ϕ”.
The semantics of derived FOL-like constructs follows naturally from the semantics

above:

• ρ̄pJq “M

• ρ̄pKq “ H
• ρ̄pϕ1 _ ϕ2q “ ρ̄pϕ1q Y ρ̄pϕ2q
• ρ̄pϕ1 Ñ ϕ2q “M z pρ̄pϕ1q z ρ̄pϕ2qq
• ρ̄pϕ1 Ø ϕ2q “M z pρ̄pϕ1q ∆ ρ̄pϕ2qq
where “∆” is the symmetric difference operation on sets

• ρ̄p@x.ϕq “ Ş

aPM ρra{xspϕq
Of particular interest to us is the implication, which can be seen as a generalization

of ground term matching to arbitrary patterns. The interpretation of ϕ1 Ñ ϕ2 is the
set of all terms that, if matched by ϕ1 then are also matched by ϕ2.

9

2.3 Predicate Patterns

Matching logic collapses the function and predicate symbols of first-order logic.
Intuitively, matching logic patterns can be seen both as terms and as predicates. When
regarded as terms, they express structure; when regarded as predicates, they create
constraints. The matching logic models are similar to the first-order logic models,
except that the symbols in the signature are interpreted as functions returning sets of
values instead of single values. Logical conjunction can be seen as intersection of the
sets of valuations (i.e., of the matching terms), negation as the complement of the a set,
and the existential quantifier as union over all possible valuations.
To clarify how a pattern can be interpreted as a predicate, we use the following

definition:

Definition 2.4 Given a model M, pattern ϕ is an M-predicate, or a predicate in
M , iff for any M -valuation ρ : V ar ÑM , ρ̄pϕq is either M (it holds, it is “true”) or H
(it does not hold, it is “false”). A pattern ϕ is simply a predicate iff it is a predicate in
all models M .

Note that J and K are predicates, and can be seen as the matching logic equivalent
of “true” and “false”. Furthermore, the logical connectives preserve the predicate nature
of patterns, e.g. if ϕ1 and ϕ2 are predicates then ϕ1 _ ϕ2 is also a predicate.

2.4 Configuration Abstraction

Configuration abstraction is a technique for framing-out details which are not relevant
for a particular formula. The semantics of a programming language is usually defined as
a set of rewrite rules, which are formulae in dynamic matching logic, each interpreting
one particular structure in the language. For example, the following K language rule
interprets reading the value of a variable from the current state of the program:

<k> xñ i . . . </k> <state> . . . x ÞÑ i . . . </state> (2.3)

The rule is interpreted as follows: given that variable x is bound to value i in the
program’s state, when reading x in the computation cell, replace it with its value i.
The rule only mentions relevant information, with . . . abstracting over the rest of the

10

X + 2 1 + Y

X + Y

1 + 2

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example this representation. The arrows are matching logic implications. Let x ` 2

and 1 ` y be two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px ` 2q ^ p1 ` yq “ p1 ` 2q. The anti-unifier, or generalizer, is their
disjunction, px ` 2q _ p1 ` yq “ px ` yq.

Unification as matching logic conjunction. Let '1 and '2 be matching logic
patterns. We are interested in the concrete terms which match both '1 and '2. The
concrete terms can be represented by some pattern ', which is a unifier of '1 and
'2. The pattern ' is more specific than both '1 and '2, so ' Ñ '1 and ' Ñ '2. Of
particular interest is the most general unifier, i.e., if '1 Ñ '1 and '1 Ñ '2 then '1 Ñ '.
In matching logic, by definition, this pattern is the conjunction '1 ^ '2.

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns '1

11

X + 2 1 + Y

X + Y

1 + 2

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example this representation. The arrows are matching logic implications. Let x ` 2

and 1 ` y be two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px ` 2q ^ p1 ` yq “ p1 ` 2q. The anti-unifier, or generalizer, is their
disjunction, px ` 2q _ p1 ` yq “ px ` yq.

Unification as matching logic conjunction. Let '1 and '2 be matching logic
patterns. We are interested in the concrete terms which match both '1 and '2. The
concrete terms can be represented by some pattern ', which is a unifier of '1 and
'2. The pattern ' is more specific than both '1 and '2, so ' Ñ '1 and ' Ñ '2. Of
particular interest is the most general unifier, i.e., if '1 Ñ '1 and '1 Ñ '2 then '1 Ñ '.
In matching logic, by definition, this pattern is the conjunction '1 ^ '2.

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns '1

11

X + 2 1 + Y

X + Y

1 + 2

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example this representation. The arrows are matching logic implications. Let x ` 2

and 1 ` y be two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px ` 2q ^ p1 ` yq “ p1 ` 2q. The anti-unifier, or generalizer, is their
disjunction, px ` 2q _ p1 ` yq “ px ` yq.

Unification as matching logic conjunction. Let '1 and '2 be matching logic
patterns. We are interested in the concrete terms which match both '1 and '2. The
concrete terms can be represented by some pattern ', which is a unifier of '1 and
'2. The pattern ' is more specific than both '1 and '2, so ' Ñ '1 and ' Ñ '2. Of
particular interest is the most general unifier, i.e., if '1 Ñ '1 and '1 Ñ '2 then '1 Ñ '.
In matching logic, by definition, this pattern is the conjunction '1 ^ '2.

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns '1

11

X + 2 1 + Y

X + Y

1 + 2

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example this representation. The arrows are matching logic implications. Let x ` 2

and 1 ` y be two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px ` 2q ^ p1 ` yq “ p1 ` 2q. The anti-unifier, or generalizer, is their
disjunction, px ` 2q _ p1 ` yq “ px ` yq.

Unification as matching logic conjunction. Let '1 and '2 be matching logic
patterns. We are interested in the concrete terms which match both '1 and '2. The
concrete terms can be represented by some pattern ', which is a unifier of '1 and
'2. The pattern ' is more specific than both '1 and '2, so ' Ñ '1 and ' Ñ '2. Of
particular interest is the most general unifier, i.e., if '1 Ñ '1 and '1 Ñ '2 then '1 Ñ '.
In matching logic, by definition, this pattern is the conjunction '1 ^ '2.

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns '1

11

X + 2 1 + Y

X + Y

1 + 2

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example this representation. The arrows are matching logic implications. Let x ` 2

and 1 ` y be two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px ` 2q ^ p1 ` yq “ p1 ` 2q. The anti-unifier, or generalizer, is their
disjunction, px ` 2q _ p1 ` yq “ px ` yq.

Unification as matching logic conjunction. Let '1 and '2 be matching logic
patterns. We are interested in the concrete terms which match both '1 and '2. The
concrete terms can be represented by some pattern ', which is a unifier of '1 and
'2. The pattern ' is more specific than both '1 and '2, so ' Ñ '1 and ' Ñ '2. Of
particular interest is the most general unifier, i.e., if '1 Ñ '1 and '1 Ñ '2 then '1 Ñ '.
In matching logic, by definition, this pattern is the conjunction '1 ^ '2.

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns '1

11

X + 2 1 + Y

X + Y

1 + 2

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example this representation. The arrows are matching logic implications. Let x ` 2

and 1 ` y be two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px ` 2q ^ p1 ` yq “ p1 ` 2q. The anti-unifier, or generalizer, is their
disjunction, px ` 2q _ p1 ` yq “ px ` yq.

Unification as matching logic conjunction. Let '1 and '2 be matching logic
patterns. We are interested in the concrete terms which match both '1 and '2. The
concrete terms can be represented by some pattern ', which is a unifier of '1 and
'2. The pattern ' is more specific than both '1 and '2, so ' Ñ '1 and ' Ñ '2. Of
particular interest is the most general unifier, i.e., if '1 Ñ '1 and '1 Ñ '2 then '1 Ñ '.
In matching logic, by definition, this pattern is the conjunction '1 ^ '2.

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns '1

11

X + 2 1 + Y

X + Y

1 + 2

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example this representation. The arrows are matching logic implications. Let x ` 2

and 1 ` y be two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px ` 2q ^ p1 ` yq “ p1 ` 2q. The anti-unifier, or generalizer, is their
disjunction, px ` 2q _ p1 ` yq “ px ` yq.

Unification as matching logic conjunction. Let '1 and '2 be matching logic
patterns. We are interested in the concrete terms which match both '1 and '2. The
concrete terms can be represented by some pattern ', which is a unifier of '1 and
'2. The pattern ' is more specific than both '1 and '2, so ' Ñ '1 and ' Ñ '2. Of
particular interest is the most general unifier, i.e., if '1 Ñ '1 and '1 Ñ '2 then '1 Ñ '.
In matching logic, by definition, this pattern is the conjunction '1 ^ '2.

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns '1

11

X + 2 1 + Y

X + Y

1 + 2

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

all sorts ::“ Variable | Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...

Context ::“ VariableJPatternK
RewritingRule ::“ Pattern ñ Pattern

Figure 4.7: Rewriting Language

from a pair of patterns. To generalize from a pair of rewrite rules, one can
simply treat each rewrite rule as a pattern, with ñ treated as a regular, non-
associative symbol. The final output of the algorithm is then post-processed
as explained in Section 4.3.1 to obtain the final solution.

4.2.2 Transition System

We propose an algorithm for computing a set of most-specific generalizations,
MSGs, of two patterns from the language of Figure 4.7. Let Mppq be the model
for pattern p, i.e., possibly-infinite set of ground terms matched by pattern p.
A pattern p is a generalization of patterns p1 and p2 if pMpp1q Y Mpp2qq Ñ
Mppq. We can define a partial order on patterns � such that p1 � p2 iff
Mpp1q Ñ Mpp2q. Then, p is a most-specific generalization of p1 and p2 iff for
all generalizations q of p1 and p2, p � q. The generalization relation extends
naturally to rewrite rules by seeing their LHSs and RHSs as a pair. In general,
a pair of patterns may not have a unique most-specific generalization in our
language, and hence our algorithm computes the set of all such generalizations.

Similar to Alpuente et al. [11], we specify the computation of MSGs using
a transition system over configurations, with the transition relation given by
a set of inference rules.

Each configuration is a triple of the form xC | S | ✓y. C is a conjunction
of unsolved generalization constraints. A generalization constraint is a triple

t1
x
4“ t2 meaning that patterns t1 and t2 must be generalized, with pattern

variable x mapped to the resulting generalized pattern in ✓. S holds the
solved generalization constraints, i.e., constraints that have been solved yet
are still required for the simplification steps in Section 4.2.5. Constraints
which have been solved yet are not required for other rules are discarded

61

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example this representation. The arrows are matching logic implications. Let x ` 2

and 1 ` y be two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px ` 2q ^ p1 ` yq “ p1 ` 2q. The anti-unifier, or generalizer, is their
disjunction, px ` 2q _ p1 ` yq “ px ` yq.

Unification as matching logic conjunction. Let '1 and '2 be matching logic
patterns. We are interested in the concrete terms which match both '1 and '2. The
concrete terms can be represented by some pattern ', which is a unifier of '1 and
'2. The pattern ' is more specific than both '1 and '2, so ' Ñ '1 and ' Ñ '2. Of
particular interest is the most general unifier, i.e., if '1 Ñ '1 and '1 Ñ '2 then '1 Ñ '.
In matching logic, by definition, this pattern is the conjunction '1 ^ '2.

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns '1

11

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
nq C ^ t1

x1
4“ t1

1 ^ ¨ ¨ ¨ ^ tn
xn
4“ t1

n

S Ñ S
✓ ✓ ^ x fiÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ° 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt1

1, . . . , t
1
mq C ^ fpt1, . . . , tkq

x1
4“ t1

1^
fptk`1, . . . tnq

x2
4“ fpt1

2, . . . t
1
mq

S Ñ S
✓ ✓ ^ x fiÑ fpx1, x2q

f is associative
k P t1, . . . , n ´ 1u
x1, x2: fresh variables
n • 2 and m • 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t

C ^ pfpt1, . . . , tnq
x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
✓ ✓

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n • 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts.
Explained in Section 4.2.3.

63

Figure 2.1: Unification and Anti-Unification in Matching Logic

configuration. The rest of the computation is elided by the first set of dots, and other
bindings in the state cell are ignored. Any other cells that might be relevant (e.g., for
keeping track of the stack, threads, etc.) are allowed without being mentioned by this
rule.

2.5 Unification and Anti-Unification

Unification and generalization (or anti-unification) can be represented as conjunction
and, respectively, disjunction of matching logic patterns [7]. Figure 2.1 shows an
example of this representation. The arrows are matching logic implications. x` 2 and
1` y are two matching logic patterns, with no other theory or domain in the logic –
i.e., the plus sign is interpreted syntactically only. The unifier of the two patterns is
their conjunction, px` 2q ^ p1` yq “ p1` 2q. The anti-unifier, or generalizer, is their
disjunction, px` 2q _ p1` yq “ px` yq.

Unification as matching logic conjunction. Let ϕ1 and ϕ2 be matching logic
patterns. We are interested in the concrete terms which match both ϕ1 and ϕ2. The
concrete terms can be represented by some pattern ϕ, which is a unifier of ϕ1 and
ϕ2. The pattern ϕ is more specific than both ϕ1 and ϕ2, so ϕÑ ϕ1 and ϕÑ ϕ2. Of
particular interest is the most general unifier, i.e., if ϕ1 Ñ ϕ1 and ϕ1 Ñ ϕ2 then ϕ1 Ñ ϕ.
In matching logic, by definition, this pattern is the conjunction ϕ1 ^ ϕ2.

11

Anti-unification (generalization) or matching logic disjunction. Pattern anti-
unification, or generalization, is the opposite of unification. Given two patterns ϕ1

and ϕ2, we are interested in the concrete terms which match either ϕ1 or ϕ2. The
concrete terms can be represented by some pattern ϕ, which is the anti-unifier (or
generalizer) of ϕ1 and ϕ2. The pattern ϕ is more general than both ϕ1 and ϕ2, so
ϕ1 Ñ ϕ and ϕ2 Ñ ϕ. Similarly to unification, of particular interest is the most specific
anti-unifier which, in matching logic, is by definition ϕ1 _ ϕ2.

As the anti-unifier ϕ is a pattern from which both patterns ϕ1 and ϕ2 can be obtained
by some (not necessarily concrete) substitution of the ϕ’s variables, anti-unification
can be seen as a mechanism for finding the common structures between the two input
patterns.
Alpuente et al. [8] give an order-sorted equational generalization algorithm capable

of covering pattern associative and commutative symbols. While powerful, matching
with associative and commutative symbols lacks crucial features required for expressing
program transformations. In Chapter 4 we describe their approach and how we extend
it to infer complex program transformation patterns.

12

Chapter 3

Evolutionary Program Transformation

Program transformation is at the core of most software tools and processes. Compilers,
including just-in-time compilers for interpreted languages such as JavaScript, transform
code from a high-level language to lower-level, machine-executable code. Optimizing
compilers, as well as automated and manual refactorings, transform code to improve
various aspects of its performance, from time, memory, or energy consumption to softer
aspects like maintainability or readability.

The work presented in this chapter was done in collaboration with Stephen J. Fink,
Rodric Rabbah, and Manu Sridharan [27].

3.1 Problem

Despite many years of extensive research, program transformation systems still have
trouble generating high performance code in many cases. For example, automatic
parallelization works well for specific cases (e.g., stencil code) but fails to scale to more
complex programs involving indirect memory references.
For most real-world problems, the optimal program is not reached through one

large transformation, but is the result of applying several finer-grained transformations.
Failures to generate optimal programs boil down to program transformation systems
having difficulty answering the following very basic question:

Given a program, a set of program transformations, and a goal, which
transformation gets the program closest to the goal?

The problem is fundamentally hard and it does not have a unique answer. For
example, an answer in the context of sequential program optimization may be the
exact opposite to an answer in the context of automatic parallelization. Furthermore, a
transformation which may not seem like a good idea at a particular step may be required
for enabling a more powerful optimization further down the pipeline (see Section 3.4).
While more powerful program analysis techniques, better domain specific languages, and

13

further specialization will incrementally alleviate the problem, we present an orthogonal
approach that sidesteps the problem.

3.2 Our Approach

We bypass the problem of choosing the optimal program transformation by simply
not making the choice in the first place. At each step, instead of making a set-in-stone
choice which reflects some local optimum, we allow the program transformation system
to consider many possible transformations. After one step, instead of having one new
program, there are several new program variants to consider. Thus, our proposed
technique is to search for the globally-optimal program among the program variants
reachable via several fine-grained transformation steps.

Most program transformation systems are restricted to giving a single transformation
as the answer to the question above. This restriction arose from the need for compilers to
be very efficient, i.e., for the compilation time to be low. In other areas, like refactoring,
the restriction is rooted in human and technical difficulties, or inconveniences, in dealing
with more than one program variant. But the restriction is no longer necessary. It it now
technically feasible and affordable to explore multiple transformation paths. On the one
hand, cloud computing has made it easy and affordable to access large computational
resources — compiling and optimizing code in the cloud may become the norm in the
near future. On the other hand, developers have become accustomed to working with
multiple variants of their code using tools such as Git [28] or Mercurial [29].
We call the proposed approach evolutionary program transformation, because it

enriches program transformation with techniques from the field of evolutionary algo-
rithms [5]. Drawing inspiration from the biological mechanisms of evolution, evolutionary
algorithms build upon the idea that given a population of individuals (which can be
anything from constants that need to be optimized to programs), applying environment
pressure on them (i.e., removing individuals which score low according to a fitness
function) causes natural selection (i.e., an increase in the fitness of the population)
along with the emergence of particularly fit individuals. New individuals are created
by either recombination, when two or more individuals (parents) are used to generate
a new individual, or mutation, when a single individual is changed directly to create
a new individual. For evolutionary program transformation, the idea is to consider
program transformations as mutation operators.

14

The cross-pollination of program transformation and evolutionary algorithms has
been mostly untapped, the notable exceptions being superoptimizers [30, 31], (though
they are mostly restricted to loop-free, low-level instruction sequences) and genetic
programming [11]. Our approach can be seen as a genetic programming approach with
only mutation operators which have strong, specific semantic meaning. This dramatically
reduces the space of possible program variants, thus increasing the probability of reaching
a good solution.

3.3 Case Study: Translating to MapReduce

We discovered the need for an evolutionary approach while working on the problem of
automatically translating sequential, imperative code to functional, parallel MapReduce.

MapReduce is a programming model which has gained traction both in research and
in practice over the last decade. Mainstream MapReduce frameworks [32, 33] provide
significant advantages for large-scale distributed parallel computation. In particular,
MapReduce frameworks can transparently support fault-tolerance, elastic scaling, and
integration with a distributed file system.
Additionally, MapReduce has attracted interest as a parallel programming model,

independent of difficulties of distributed computation [10]. MapReduce has been shown
to be capable of expressing important parallel algorithms in a number of domains, while
still abstracting away low-level details of parallel communication and coordination.
Automatically translating sequential imperative code into a parallel MapReduce

framework would be very useful. An effective translation tool could greatly reduce costs
when re-targeting legacy sequential code for MapReduce. Furthermore, a translator
could simplify the process of targeting MapReduce in new programs: a developer could
concentrate on sequential code, letting the translator handle parallel computation.
Translating an imperative loop to the MapReduce model inherits many of the

difficulties faced by parallelizing compilers, such as proving loops free of loop-carried
dependencies. However, the MapReduce framework differs substantially from a shared-
memory parallel loop execution model. Notably, MapReduce implies a distributed
memory programming model: each mapper and reducer can operate only on data which
is “local” to that function. So, an automatic translator must at least partition memory
accesses in order to create local mapper and reducer functions which do not rely on
shared memory.

15

Additionally, the communication model in MapReduce is more limited than traditional
distributed memory parallel programming with message-passing. Instead, mappers
and reducers communicate via a shuffle operation, which routes mapper outputs to
reducer inputs based on on key fields in the data. These restrictions allow practical
MapReduce frameworks to run relatively efficiently at large scale; however, they also
introduce constraints on the programmer and challenges for an automatic translator.

The key challenge in building a translator to MapReduce is the effective handling of
the imperative updates in the original code, which must be translated away to fit the
program in a functional MapReduce form. Statements performing indirect reads and
writes to array elements inside loops pose a particular challenge, due to the difficulty
of determining whether such statements can access locations overlapping across loop
iterations.

Previous approaches to parallelizing such codes (e.g., [34]) typically rely on being able
to prove that loop iterations only interfere with each other in very constrained ways,
limiting their applicability. Section 3.4 will illustrate a simple example that existing
approaches cannot handle.

3.4 Motivating Example

We assume the reader is familiar with the MapReduce model. Here, we briefly review
MapReduce details as presented by Dean and Ghemawat [32] before presenting an
overview of our approach using their WordCount example.

In the MapReduce framework, the programmer defines a map function and a reduce
function. The functions have the following types:

map : xk1, v1y Ñ Listrk2, v2s (3.1)

reduce : xk2, Listrv2sy Ñ Listrv2s (3.2)

The MapReduce framework relies on a built-in, implicit shuffle function to route
the output of the mappers to the input of the reducers. Logically, the shuffle function
performs a group-by operation over the map outputs. That is, for each distinct key k of
type k2 output by a mapper function, the shuffle function collects all the values of type
v2 associated with k, forms a list l of these values, and sends the resulting pair pk, lq to
a reducer.

16

Dean and Ghemawat use WordCount as an example when defining mappers and
reducers. In their WordCount example, the map function takes as input a document
name and a String which holds the document contents. For each word w in the contents,
the mapper emits a pair pw, 1). The shuffle operation will create a list of the form
r1, 1, . . . , 1s for each word w, grouping the map output values (all ones) by word. Then
the reducers simply sum up the number of ones present in the list associated with each
word. The resulting sums represent the frequency count for each word.

The built-in shuffle or group-by operation plays a central role, for at least two reasons.
Firstly, the shuffle operation encapsulates all communication between nodes. In tradi-
tional distributed-memory, parallel computing models, the programmer must explicitly
pass messages or manage remote memory access in order to express communication.
Instead, in MapReduce, the programmer simply defines functions which produce and
consume tuples, and the framework transparently implements the necessary communica-
tion. MapReduce cannot express every possible parallel algorithm and communication
pattern – but when MapReduce does apply, it relieves the programmer from the burden
of managing communication explicitly, resulting in much simpler parallel programming.
Secondly, we note that the shuffle operation can be extremely expensive, and can limit
performance in many use cases if not managed carefully. Naïve use of MapReduce can
result in all-to-all communication patterns whose overhead can overwhelm any speedups
from parallel computation.

In the remainder of this chapter, we focus on MapReduce primarily as a convenient
model for expressing parallel computation. In particular, we consider the challenge
of automatically translating sequential code into a MapReduce parallel-programming
model. We will not address issues specific to large-scale distributed Map-Reduce
deployments, such as fault-tolerance, elasticity, and distributed file systems.

Overview of our approach. Consider the challenge of automatically generating
effective MapReduce code for WordCount. Figure 3.1 shows the sequential Java code,
our starting point. The program iterates through a list of documents docs, accumulating
the word counts into the m map.

Parallelizing the Figure 3.1 example is difficult because of the updates to the shared
m map in different loop iterations — naïvely running loop iterations in parallel would
cause a race conditions on m if two iterations try to simultaneously update a word’s
count. Some parallelism might be achieved by splitting the docs list of documents into

17

Map<String,Integer> WordCount(List<String> docs) {
Map<String,Integer> m = new HashMap<>();
for (int i = 0; i < docs.size(); i++) {

// simplified word split for clarity

String[] split = docs.get(i).split(" ");
for (int j = 0; j < split.length; j++) {
String w = split[j];
Integer prev = m.get(w);
if (prev == null) prev = 0;
m.put(w, prev + 1);

}
}
return m;

}

Figure 3.1: Java word count program.

chunks, and computing word counts for each chunk simultaneously.
However, this transformation still leaves the sequential work of combining the word

counts from the different chunks into final, global word counts. In contrast, the
standard MapReduce word count program, which Mold can generate, enables parallel
accumulation of final word counts, by assigning the accumulation task for different
ranges of words to different reducers.
We first consider generating a MapReduce program for the inner loop of Figure 3.1

(lines 7–12), which computes word counts for an array of words split. The first step
of our technique is to translate the input program into a functional representation via
Array SSA form [35]. Figure 3.2 gives the Array SSA form for our inner loop. Note
that here, the m map is the “array” being updated by the loop. Our implementation
treats Java arrays, Lists, and Maps in a unified manner as mappings from keys to
values. This form can be seen as functional if every write to a location of m is treated
as creating a new copy of the map with a new value for the appropriate word.
After constructing the Array SSA form, Mold translates the program to a more

explicitly functional form. Unlike previous translations from SSA to functional code [36,
37], our technique preserves the structure of loops by translating them using the standard
fold operation. Mold transforms each non-φ SSA assignment into a let statement.
E.g., w “ splitrj3s is transformed to let w “ splitrj3s in
Each loop (branching and φ instructions) is transformed into a fold going over the

domain of the initial loop, with its combining operation taking the tuple of φ values as
one argument and the loop’s index as the other, and returning a new tuple of values. In

18

.

.

.

.

.

Figure 3.2: Array SSA form for the inner loop of Figure 3.1.

our example, the fold goes over the range of integers from 0 to the length of the split
array, with a combining operation that takes as arguments m2 and j3 and returns m1,
i.e., the in-loop branch of φpm1,m2q.
Each remaining φ value with its corresponding branch instruction is rewritten into

into a predicated if assignment. E.g. φpprev0, prev1q with the corresponding branch
condition prev1 ““ null is transformed to:

if prev1 ““ null then prev0 else prev1 (3.3)

Thus, the SSA-form code in Figure 3.2 is converted to:

let updatedCount “ λm2 j3 .

letw “ splitrj3s in
let prev1 “ m2rws in
let prev2 “ if prev1 ““ null then 0 else prev1 in (3.4)

let newCount “ prev2 ` 1 in

letm1 “ m2 rw := newCounts in
m1

in foldm0 updatedCount p0...plength splitqq

19

Next, Mold explores the space of possible optimizing transformations that can be
applied to the code above. The transformations are expressed as rewrite rules and are
detailed in Section 3.8. For now, we will focus on the particular transformations that
take the functional, yet sequential, code above and turn it into MapReduce form.

After inlining some of the let expressions and renaming variables for readability, we
get to:

let updatedCount “ λm j .

letw “ splitrjs in
let prev “ mrws in (3.5)

mrw :=pif prev ““ null then 0 else prevq ` 1s
in foldm updatedCount p0...plength splitqq

One initial observation is that the fold traverses a range of integers instead of the
split collection itself. Thus, Mold transforms the code such that the fold traverses
the collection without indirection:

let updatedCount “ λm w .

let prev “ mrws in
mrw :=pif prev ““ null then 0 else prevq ` 1s

in foldm updatedCount split

(3.6)

Next, Mold identifies common update idioms and lifts them to more general func-
tional operations. In our example, the m map is lifted to return zero for non-existent
keys. Thus, the if condition returning either zero or the previous value in the map
becomes unnecessary, and Mold replaces it with just the map access. Thus, Mold

transforms the program to:

let updatedCount “ λm w .mrw :=mrws ` 1s in
foldm updatedCount split

(3.7)

The fold call takes the initial m map, the updatedCount function, and the split
String array, and computes a new map with updated word counts. The updateCount
accumulator function takes a map m and a word w as arguments, and returns a new
map that is identical to m except that the count for w is incremented.

20

The functional form above is semantically equivalent to the original imperative
code, but unfortunately exposes no parallelism, since the fold operation is sequential.
Furthermore, trying to parallelize the fold directly would not work as the accesses to
the m collection do not follow a regular pattern, i.e. w may have any value, independent
of the underlying induction variable of the loop.
A common way to parallelize such code is to take advantage of the commutativity

of the updating operation and tile the fold, namely the loop [38]. While this solution
does expose parallelism, it is coarse-grained, may not be applicable in the presence of
indirect references, and does not match the MapReduce model of computation.

Mold generates this tiled solution, but it also explores a different parallelization
avenue: instead of avoiding the non-linear w value, a program can inspect it [39] to
reveal parallelism. Parts of computation operating on distinct w values are independent
so they can be executed in parallel. Thus, our example is also equivalent to:

let grouped “ pgroupBy id splitq in
mappλ k v . foldmrkspλ y x . y ` 1q vq grouped

(3.8)

The inner fold is only computing the size of the v list of words, and adding it to the
previous value in m. Assuming an initially empty map m, in the end, the rewrite system
produces the following program as part of its output:

let grouped “ pgroupBy id splitq in
mappλ k v . v.sizeq grouped

(3.9)

The sequential fold operation has been completely eliminated. Instead, we are left
with the equivalent of the canonical MapReduce implementation of word counting.
The groupBy operation yields a map from each word to a list of copies of the word,
one for each occurrence; this corresponds to the standard mapper. Then, the map

operation takes the grouped data and outputs the final word count map, corresponding
to the standard reducer.1 Given a large number of documents spread across several
servers, the groupBy task can be run on each server separately, and the map task in the
reducer can also be parallelized across servers, given the standard “shuffle” operation to
connect the mappers and reducers. The standard MapReduce implementation does not
construct explicit lists with a groupBy, but instead sends individual word instances to

1The value of the map operation is itself a map, with the same keys as the input map; see Section 3.8.1
for details.

21

the reducers using “shuffle.” Mold further optimizes the above program to generate
this more efficient implementation.
In this section we discussed the inner loop of the input WordCount program. In

Section 3.8 we discuss how this integrates with the fold for the outer loop, and how
Mold brings the entire program to an optimized MapReduce form.

Finally, Mold takes what it considers the best generated code versions and translates
them to Scala. The best generated version, exactly as it is output by Mold, is:

docs

.flatMap({ case (i, v9) => v9.split(" ") })

.map({ case (j, v8) => (v8, 1) })

.reduceByKey({ case (v2, v3) => v2 + v3 })

The generated code’s computation structure is similar to classic MapReduce solutions
for the WordCount problem. Each document is split into words, which are then mapped
to pword, 1q pairs. The reduceByKey groups the “1” values by their associated word,
and then reduces each group by `, effectively counting the number of words. The code
above uses custom collection classes which implement interfaces that provide higher-
order functional operators (e.g., map). The system provides three implementations of
these operators. The code can execute using Scala sequential collections, Scala parallel
collections, or on the Spark MapReduce framework [12].

3.5 Mold System Overview

Figure 3.3 illustrates the design of our translator. An input program is first translated
into Array SSA form [35] which facilitates the derivation into an lambda-calculus-style
functional representation. In contrast with Appel’s and Kelsey’s work on converting
from SSA to functional code [36, 37], our translation uses a fold operator to maintain
the structure of loops, which is essential for later transformations.

The initial “lambda plus fold” representation of a program is still far from an effective
MapReduce program. While fold operations could be implemented using reducers,
the lack of mappers hinders parallelism, and the code still operates on shared data
structures. To address these problems, we employ a rewriting system to generate a
large space of MapReduce programs. The rewrite rules govern where mapper constructs
can be introduced in a semantics-preserving manner. Critically, in more complex cases
where loop iterations access overlapping locations, we exploit the MapReduce shuffle

22

Figure 3.3: Overview of our translation system.

feature to group operations by accessed locations, exposing much more fine-grained
parallelism than previous approaches. Given the rewriting rules, our system performs a
heuristic search to discover a final output program, using a customizable cost function
to rank programs.

In this chapter we give an automatic translation from imperative array-based code to
a functional intermediate representation, amenable to generating MapReduce programs.
Critically, the translation represents loops as fold operations, preserving their structure
for further optimization. Then, we present a rewriting system to generate a broad
space of equivalent MapReduce programs for a given imperative program from our
functional IR. The space is explored via heuristic search based on a cost function that
can be customized for different backends. Then, we describe a rewrite rule in our
system that introduces groupBy operations to effectively handle complex indirect array
accesses. This novel technique is critical for handling basic MapReduce examples like
“word count.”. Finally, we present Mold, an implementation of our techniques, and an
experimental evaluation showing the tool’s ability to handle complex input programs
beyond those in the previous work.

3.6 Generating Functional IR

In this section, we describe the initial stages of our translation system, which convert
an input program into a functional intermediate representation via Array SSA form.

23

3.6.1 Array SSA

The standard SSA representation enables straightforward tracking of def-use rela-
tionships by ensuring each variable has a single static definition which reaches all uses.
However, standard SSA does not reflect modification to the stack or heap, such as
the effects of array writes. Array SSA form [35] extends traditional SSA form with
constructs that represent modifications to array contents.
Array SSA form generates a new name for an array variable on each write. Any

subsequent reads from the array use the new name, simplifying tracking of data flow
though the array. In contrast to the original work on Array SSA, our system treats
arrays as being immutable data structures, as we aim to translate the program into a
functional representation.
Hence, each array write is modeled as creating a fresh array with a new SSA name.

With this functional model, our Array SSA form is simplified compared to the previous
work [35]; we do not require a φ statement after each array write, and we do not require
a special semantics for φ statements over array variables.

Mold generalizes the collections covered by Array SSA to include maps and lists.
Thus, new SSA names are also introduced when putting an element into a map, or
adding or putting an element into a list. This allows Mold to treat arrays, lists, and
maps in a unified manner as mappings from keys to values.
The Array SSA form guarantees that, as long as no aliases are introduced through

callee or caller functions, and no pointer to an array is retrieved/stored through another
object or array, the arrays (and the lists and maps) can be treated as a values. Note
that our translation to Array SSA form does not check for aliasing of array variables
introduced in unobserved code, e.g., via caller or callee functions. Our implementation
currently assumes that unobserved code does not introduce such aliasing.

3.6.2 Functional IR

Previous work by Appel [36] and Kelsey [37] observed that a program in SSA form is
essentially a functional program. This observation can be extended in a straightforward
manner to the Array SSA form described above, yielding a method for translating to a
functional intermediate form.

However, the aforementioned translation techniques are not suitable for our purposes,
as they do not preserve the structure of loops (which are translated to general recursive

24

Var a|b|c| . . .
|xVar,Var, . . . y

Exp λVarr: Types .Exp

| letVar “ Exp inExp

| Exp Exp

|xExp,Exp, . . . y
|ExprExps
|ExprExp :=Exps

Type A | B | C | . . .
| Type Ñ Type

| xType,Type, . . . y
| TyperTypes

Figure 3.4: Lambda calculus IR

function calls). Transformation of loop computations is critical to introducing paral-
lelism, so our system relies on knowledge of loop structure. Here, we give a translation
from our Array SSA form to a functional IR that includes a built-in fold construct,
used to preserve the structure of loops.

Mold’s intermediate representation (IR), shown in Figure 3.4, is a typed lambda
calculus. For brevity, throughout the rest of the chapter, we omit the types when they
are clear from the context. The IR is enriched with a tuple constructor, e.g., xe1, e2, . . . y.
Tuples behave like functions (e.g., xf, gy xa, by “ xf a, g by), and are unwrapped on
application (e.g., (λx y . yq xa, by “ b).
We sometimes use a tuple notation in the parameter part of lambda expression for

highlighting a particular grouping of the parameters, but it can be interpreted in a
curried fashion, e.g., λxx, yyz . e “ λx y z . e. The IR has let expressions which allow
simple pattern-matching on tuples (e.g., letxx1, x2y “ xe2, e2y inx1 ` x2). arbs and
arb := cs are read and write accesses at index b of map (array) a.

Figure 3.5 shows the built-in data structures along with signatures for the functions
and operations operating over them. These constructs are mostly well-known, and we
will describe them as needed throughout the paper.

The translation from Array SSA relies on left-fold, a higher-order function that
takes an initial element (a zero) of type B and a combining operation B Ñ A Ñ B,

25

(data structures)

MrAs : bag (multiset) with values of type A
MrK,V s : map with keys of type K and values of type V

MrK,V s is an MrxK,V ys
(higher order functions)

fold : B Ñ pxB,Ay Ñ Bq Ñ pMrAs Ñ Bq
map : pAÑ Bq Ñ pMrAs Ñ MrBsq
map : pxK,V y Ñ W q Ñ pMrK,V s Ñ MrK,W sq

groupBy : pAÑ Kq Ñ pMrAs Ñ MrK, MrAssq
(functions and operations)

zip : xMrK,As, MrK,Bsy Ñ MrK, xA,Bys
zip : xMrAs, MrBsy Ñ MrxA,Bys
zip : xMrKs, MrK,Bsy Ñ MrK,Bs
++ : xMrK,As, MrK,Asy Ñ MrK,As

addition with replacement of matching keys
‘ ‘ monoid plus operators
‘ : xMrK,As, MrK,Asy Ñ MrK,As

a‘ b “ pmapλ kxx yy . x‘ yqpa zip bq

Figure 3.5: Built-in data structures and operators

26

and returns a function which reduces the elements of a collection of A elements into a
value of type B by applying the operation from left to right.

Mold transforms Array SSA form to the functional intermediate representation (IR)
by applying the rules in Figure 3.6. The instructions in the control flow graph (CFG)
are visited in topological order. Strongly connected components are considered nodes
in the order, and are visited in turn in topological order. We use the ă operator in
Figure 3.6 to reflect this ordering: s ă R matches a statement s followed by remaining
statements R in the topological ordering.

We first discuss the non-loop rules, which are mostly straightforward. SSA assignments
x “ E are transformed to lets. Any branch instruction is skipped, left to be handled
when reaching its associated φ. The return instruction is replaced with the returned
variable, which eventually sits at the innermost level of the let nest.

An if statement in the original code corresponds a branching statement followed
by a set of φ instructions in SSA form. Mold transforms each of the φ instructions
corresponding to an if into a functional if with the condition coming from the branch-
ing instruction, and the branches being the arguments of the φ instruction. As the
instructions are visited in a topological order, the variables holding the result for each
of the two branches are already available in scope.

Computing the results for the if before the instruction is not an issue from a semantic
perspective because in our representation we have no side effects and no recursion
(except for structured fold recursion). Also, performance is not hurt as the two
branches are inlined by the rewrite system in a later step.
The more complex rule translates loops to applications of the fold operator. In

Figure 3.6, a loop is specified in terms of its φ variables, which include the index variable
i and other variables r1, r2, . . . updated in the loop body. These variables characterize
all possible effects of the loop visible to subsequent code. For each φ variable rk, we
use r1k to refer to the value coming from outside the loop, and r2k for the new value
produced by the loop.

The loop gets translated to a fold over the domain of values for the index variable,
from i1 to l, the loop bound, in Figure 3.6. The combining function takes as arguments
the current rk values and loop index, runs the body of the loop E once for those values,
and returns the new rk values. The initial value for the fold is a tuple of the r1k values
coming from outside the loop.
Any loop with a loop-invariant domain (i.e., the domain does not depend on the

27

Lpx “ E ă Rq Lparx := ysq
Ó Ó

letx “ LpEq inLpRq arx := ys

Lpreturn xq Lpbranch instruction ă Rq
Ó (handled when reaching its φ)
x Ó

LpRq

L

¨

˚

˚

˝

for i “ φpi1, i2q,
r1 “ φpr11, r21q, . . . , rn “ φpr1n, r2nq
i ă l

t E u ă R

˛

‹

‹

‚

Ó

L

¨

˝

let f “ λ r1 r2 . . . i .LpE ă xr21, . . . , r2nyq in
let r “ foldxr11, . . . , r1ny f Rangepi1, lq in
let r1, . . . , rn “ r inLpRq

˛

‚

L

¨

˝

x “ φpx0, x1q
generated by the if
with branch condition C

ă R

˛

‚ Lp. . . q

Ó Ó
letx “ if C thenx0 elsex1 inLpRq . . .

Figure 3.6: Array SSA to Lambda Calculus with fold. L is the translation function,
and ă reflects a topological ordering of statements in the CFG.

28

loop’s φ functions) can be translated to a fold. Our current implementation only
handles indexed collection iteration with a range of numbers with stride 1.

All other SSA instructions (function calls, operations, etc.) are transformed to lambda
calculus in the intuitive straightforward manner. Function calls are not inlined.

3.7 Translation System

The transformation described in the previous section generates a lambda calculus
representation of the original program but is still far from MapReduce form. The loops
in the original program are now sequential folds that do not expose any parallelism. In
order to get to MapReduce form, Mold explores the space of semantically equivalent
programs obtained by applying a set of program transformation rules.

3.7.1 Exploration and Refinement

Mold distinguishes between refinement and exploration rewrite rules. Refinement
rules make definite improvements to the input term, e.g., eliminating a redundant
operation such as fold r λxr, xk, vyy . rrk := vs. Exploration rules may either improve
the original code or bring it to a form that allows other rules to apply, e.g., loop fission
is not necessarily an optimization but may allow another rule to eliminate part of the
original loop.

Exploration rules are treated as transitions between states, i.e., applying a transition
rule generates a new state in the system. Refinement rules do not generate new states
but are applied exhaustively to the output of an exploration rule.

One transition in our rewrite system is comprised of one application of an exploration
rule followed by a complete reduction using the set of refinement rules. The set of
refinement rules can be seen as a separate confluent rewrite system.

The set of transformation rules is not complete, i.e., they do not generate all possible
semantically equivalent programs. The rules are intended to be sound, i.e., they are
intended to preserve the semantics of the original program, but we have not formally
proven this. More formal characterizations of soundness and completeness are planned
for future work.

29

3.7.2 Optimized Exploration

Mold’s rewrite system implements optimization mechanisms which can be applied
according to a number of policies, guided by estimates of code quality. The system is
not confluent nor terminating – so, the rewrite engine explores the space of possible
rewrites guided by a heuristic driven by a cost function.
The optimization problem reduces to searching through this system for a good

solution. The number of states is kept in check by having a single state represent all
alpha-equivalent programs that have the same beta-reduced form.

Mold searches through the state space guided by a cost approximation function over
program variants. The cost function approximates the runtime performance of the code
on a particular platform. Thus, Mold allows optimization for different platforms by
adopting appropriate cost functions.
Figure 3.7 shows the cost estimation function for generating MapReduce programs.

The estimated cost is computed recursively over a given term. The cost of function
composition/application and tuples is the sum of the cost of their subexpressions. The
cost for collection accesses has an extra weight (Ccollection

get and Ccollection
set) to encourage

access localization. map and fold operators have an initial cost meant to model the
start of a distributed operation (Cmap

init, Cfold
init , and C

groupBy
init), and have their operation

cost multiplied by a constant (Cmap
op , Cfold

op , and CgroupBy
op) representing an approximation

for the size of the array. Binary operations are curried, and their function has a constant
cost. All other functions have a predefined, constant, cost.
A unique set of constants is used for generating all programs in our evaluation, i.e.,

the constants are not program-specific. We determined good values by manually running
experiments and refining the constants. This process could be automated to find a
more precise and possibly platform-specific set of constants. Furthermore, our rough
cost estimation function could be made more precise by applying techniques such as
those proposed by [40], but the current approach has proved sufficient for optimizing
most programs in our evaluation suite.

3.8 Optimization Rules

In this section we present the main rules of Mold’s rewrite system. We show the rules
in a simplified form. The actual rules have additional complexity for updating types,
for handling idiosyncrasies of our source and target languages, for piggy-backing arity

30

CpF ˝Gq “ CpF q ` CpGq
CpF pGqq “ CpF q ` CpGq

CpxF,G, ...yq “ CpF q ` CpGq ` ...
CpArIsq “ Ccollection

get ` CpAq ` CpIq
CpArK :=V sq “ Ccollection

set ` CpAq ` CpKq ` CpV q
CpmapF q “ Cmap

init ` Cmap
op ˚ CpF q

Cpfold I F q “ CpIq ` Cfold
init ` Cfold

op ˚ CpF q
CpgroupByF q “ CgroupBy

init ` CgroupBy
op ˚ CpF q

Figure 3.7: Cost estimation function

information useful for code generation, and for optimizing the exploration. Furthermore,
the actual rule set has additional variants and guards for correctly handling non-pure
functions like random.
Figure 3.8 summarizes the notation and functions we use in the following figures.

3.8.1 Extract map from fold

The transformation for revealing parallelism which is most commonly applied is
the “extract map from fold” rule in Figure 3.9. It transforms a fold by identifying
independent computations in its combining function f , i.e., operations that do not depend
on results from other f invocations during the fold. These independent computations are
extracted into a (parallelizable) map operation. For example, fold 0λ r k v . r`pf k vq
is transformed to pfold 0λ rk vf . r` vf q ˝ pmapλ k v . f k vq, as pf k vq is independent
(we shall explain map shortly). After the transformation, the purely-functional map can
be easily parallelized, while the fold with the commutative ` operation can also be
executed very efficiently.
The signatures for our data structures and mapping operators relevant to this

transformation are shown in Figure 3.5. Data structures are either a bag of values of
type A, or indexed collections (e.g., arrays or maps) with key type K and value type V .
We often view an indexed collection as a list of key-value pairs. The first map version
takes a collection of elements of type A into a collection of elements of type B, as is
standard. The second map version is similar but only applies to indexed collections. It
generates a new indexed collection with the same keys as the original and the mapped

31

E letters in uppercase are pattern variables
x letters in lowercase are program variables

or patterns matching program variables
E1 Ă E2 E1 is a subexpression of E2

freepEq is the set of free variables in E
x P E is shorthand for x P freepEq

ErE1{E0s substitute E1 for E0 in E
K is only used for denoting pattern matches

on the parameters binding to the keys of
the operator domain

Figure 3.8: Notation for optimization rules.

values. We assume that a mapping function AÑ B is implicitly lifted to xK,Ay Ñ B

if necessary.
The “extract map from fold” rule, shown in Figure 3.9, matches on any fold taking

xr00, . . . , r0ny as the initial value and a function combining each tuple of keys K and
values V of a collection to a tuple xr0, . . . , rny. The fold operation E is split into the
composition of functions pλxvf0 , . . . , vfmy . F q ˝ G, such that G is the most expensive
computation (according to the cost function C; see Section 3.7) that is independent of
other “iterations” of the fold’s execution. If we see the fold as a loop, G does not
have any loop carried-dependencies.
How do we reason that G is independent? For a functional fold operation, a

dependence on other fold “iterations” manifests as an access of an accumulator parameter
ri, i.e., a parameter holding the “result thus far” of the fold. Hence, if G makes no
reference to any parameter ri, it is trivially independent. Unfortunately, this simple
reasoning is insufficient for providing independence for cases like the following:

fold r0 λ r k . rrk := fprrksqs (3.10)

This fold updates each entry in a collection to a function of its previous value. We
would like to extract the computation fprrksq into a parallel map operation, but it
accesses accumulator parameter r and hence is not trivially independent.
To handle cases like the above, we use this more sophisticated independence check

32

(extract map from fold)

foldxr00, . . . , r0nyλxr0, . . . , rny K V .E

pfoldxr00, . . . , r0nyλxr0, . . . , rny K xvf0 , . . . , vfmyVX freepF q . F q
˝ pmapλK V .xGrr0_{r_s, VX freepF qyq

E “ pλxvf0 , . . . , vfmy . F q ˝G
F is arg max CpGq with the condition:
Ei P r0..ns .ri P G^ ri P Err0_{r_s where
r0_{r_ “ r0i rks{rirks applied for all i P r1..ns k P K

(fold to group by)

fold r0 λ r V . rrE :=Bs
pmapλ k l .pfold r0rksλ g V . Cq lq ˝ pgroupByλV .Eq

C “ Brg{rrEss
r R C ^ r R E ^ D v P V.v P E
we cannot prove E is distinct across the folding

Figure 3.9: Rules revealing parallelism in fold operators

for G:
Ei P r0..ns .ri P G^ ri P Err0_{r_s (3.11)

As shown in Figure 3.9, the Err0_{r_s expression substitutes an access to the initial
collection r0i rks for rirks in E, for all possible ri and k. (We shall discuss the reason
for this particular substitution shortly.) So, in essence, the formula ensures that for
any ri P G, all appearances of ri in the enclosing expression E are of the form rirks,
i.e., they are accesses to a current key k. (Any non-conforming access like rirk` 1s will
not be removed by the r0_{r_ substitution.) Checking that all collection accesses in
E use a current key ensures that G remains independent in spite of its access of the
accumulator collection.
If a non-trivial (i.e., contains computation with a non-zero cost) G is found, it is

pulled out into a map which is then composed with a fold executing F , the remaining
computation in E. The signature of the fold’s operation is adjusted to account for the
change: vf0 , . . . , vfm, the variables linking G to F , are now parameters, and any previous

33

parameters (V) which are still needed by F are propagated (i.e., VX freepF q). As the
extracted G no longer has access to the ri parameters, we place Grr0_{r_s in the map
instead, so its accesses are performed on the initial collection r0.
The rule does not specify how E is decomposed. E is in many cases a tuple of

expressions. Our current implementation selects the subexpression with the largest
cost for each expression in the tuple E. It uses a recursive function that computes the
largest subexpression considering name binding constraints and the cost function.
The “extract map from fold” rule rewrites the example above that updates all

collection values to:

pfold r0 λ rxk, vy . rrk := vsq ˝ pmapλ k . fpr0rksqq (3.12)

The “extract map from fold” transformation is somewhat analogous to parallelizing
a loop with no loop-carried dependencies in imperative code. A key difference is that
here, we leverage our functional IR to extract and parallelize sub-computations of the
fold without worrying about side effects; similar transformations for imperative loops
would likely require greater sophistication.

3.8.2 Transform fold to groupBy

While the “extract map from fold” rule exposes significant parallelism, it cannot
handle cases where distinct loop iterations can update the same array / map location.
MapReduce applications like WordCount from Section 3.4 often work around such
issues by using a shuffle operation to group inputs by some key and then process each
group in parallel. Here we present a “fold to groupBy” rule that enables our system
to automatically introduce such shuffle operations where appropriate, dramatically
increasing parallelism for cases like WordCount. We are unaware of any similar automatic
transformation in previous work.
The transformation we used for grouping by word is an application of the “fold

to groupBy” rule shown in Figure 3.9. As shown in Figure 3.5, groupBy clusters the
elements of a collection of type MrAs according to the result of the function A Ñ K.
It returns a map from keys K to lists MrAs of elements in the original collection that
map to a specific key. The rule matches any fold with a body which is an update of
a collection at an index E that we cannot prove as distinct for each execution of the
fold’s body. If the index is obviously distinct, Mold applies the “extract map from

34

fold” rule instead — see Section 3.8.1.
The output code first groups the elements of the collection by the index expression

(groupByλV .E), and then it folds each of the groups using the update expression B
from original body of the loop. groupBy’s output is a Map from each distinct value of
E to the corresponding subset of the input collection. The map operation’s parameters
are k, which binds to the keys of the grouped collection (i.e., evaluations of E), and l
which contains a subset of the input collection. The fold starts from the k value of r0,
and folds l using the operation C, which is original expression B with accesses to index
E of the old reducer replaced with with g, the new parameter corresponding only to
the k-index of r.

The side condition requires that r does not appear in either the new expression C or
the index expression E. Otherwise, the result of the of computation could depend on
fold’s evaluation order, so the transformation would not be correct. To avoid grouping
by an invariant expression, resulting in a single group, the side condition also requires
that E is dependent on some parameter in V .

Revisiting the original example, the expression below is the program before applying
the rule, with a beta reduction applied to make the match clear:

foldm λm w .mrw :=mrws ` 1s (3.13)

The outer m matches r0, the inner m matches r, w matches E, and m[w] + 1

matches B. The side conditions are satisfied, so the expression is rewritten to:

mappλ k l . foldmrkspλ g w . g ` 1q lq ˝ pgroupByλw .wq (3.14)

3.8.3 Localizing Accesses

MapReduce platforms often require computations to be local, i.e., to be free of accesses
to global data structures. Our system contains rules to localize computations that do
not meet this condition. Consider the following computation, based on an intermediate
transformation of the WordCount example:

pmapλ k v .mrks ` size vq grouped (3.15)

Here, grouped maps each word to a list of occurrences, and the map is summing the
size of each list with existing counts in some map m. This code cannot be executed in

35

(localize-map-accesses)

mapλKV .E

λ a .ppmapλK V v .Erv{crissq
˝pzip a cqq

c P tc Ă E |
pD!i P K.cris Ă Eq^
pfreepcqz freepEq “ Hq ^
pEv P K Y V . v P cqu

(localize-group-by-accesses)

groupBypλ k .Eq D
groupBypλ kv .Erv{crkssqc

D is the domain (set of
keys) of the c Map

Figure 3.10: Rules for localizing accesses

MapReduce because it accesses the collection m, unless it is localized.
Localization is achieved by explicitly passing global data as a parameter to the

relevant operations, using the built-in zip operation from Figure 3.5. zip is overloaded
to allow various input collection types. Its first version takes two maps with the same
key type into a map from keys to pairs of values. If one of the maps is missing a value
for a certain key, the zero value for the map’s value type is used instead. For example:
zippMp1 Ñ 8q,Mp2 Ñ 9qq “ Mp1 Ñ x8, 0y, 2 Ñ x0, 9yq. zip’s second version takes a
bag S and a map M and returns a map that retains only the entries from M with keys
from S, e.g., zippSp3q,Mp3 Ñ 8, 1 Ñ 9, 2 Ñ 7qq “Mp3 Ñ 8q.
Using the zip operation, the map from the example above can be transformed to:

map pλ k v vm . vm ` size vq zippgrouped ,mq (3.16)

The “localize map accesses” rule in Figure 3.10 achieves this transformation. In this
form, the map’s operation only refers to data provided through its parameters, making
it amenable to MapReduce execution. The “localize groupBy accesses” (Figure 3.10)
and “localize fold accesses” (not shown) achieve the same purpose for their respective
operators.

3.8.4 Loop Optimizations and Code Motion

Our rewrite system has many rules that are inspired from classic loop optimizations
and code motion that permits the application of more rules during rewriting. Figures

36

(map fusion)

pmapλ k2v2 . E2q ˝ pmapλ k1v1 . E1q
mapλ k1, v1 . E2rk1{k2srE1{v2s

(fold vertical fission)

foldxr00, . . . , r0nyλxxr0, . . . , rnyV y .xE0, . . . , Eny
λ c .xpfold r00 λ r0 V .E0q c, . . . , pfold r0n λ rn V .Enq cy

applied @k P 0 . . . n @k1 ‰ k.rk1 R Ek

(map vertical fission)

pmapλKV .Eq ˝ pzipC0 . . . Cnq
pmapλKV rz{vs . Erz{F sq ˝ pzipC0 . . . pmapλ k v . F Ckq . . . Cnq

F,G “ arg max
E“F˝G^cond

CpF q
cond : pD!k.Ck P F q ^ v P V goes over Ck ^ @v1 P V.v ‰ v ñ v1 R Ck

(map horizontal fission)

map λK V .B

mapλKpfreepF q X V qpfreepGqz freepBqq . F q ˝ pmapλKV .Gq
F,G “ arg max

B“F˝G
CpF q F is not trivial

Figure 3.11: Fusion-fission rules for merging and splitting map and fold operators.

3.11, 3.13, and 3.12 detail these transformations.
Figure 3.11 shows rules for merging and splitting map and fold operators. As loops

in original imperative program often update multiple variables, the initial Array SSA to
Lambda phase generates fold operators reducing over tuples of those variables. Even
after map operators are revealed, the operators sometimes still involves large tuples.
The vertical fission rules in Figure 3.11 split the operators over tuples into multiple
operators going over parts of the original tuples. The fold vertical fission rule rewrites
a fold reducing to a tuple into a tuple of fold operators reducing to the same tuple.
The map vertical fission achieves the same purpose for the input domain. The map

horizontal fission is the counterpart of the traditional loop fission, splitting a map with
a F ˝G into pmapF q ˝ pmapGq. The map fusion rule is its inverse.
Figure 3.13 shows the set of rules used by Mold to enable the application of other

37

(transpose zipped)

pmapλKxv0, . . . , vny . EqpzipC0 . . . Cnq
pmapλKxv0, . . . , v1k, . . . , vny . Erv1k{vkrJssqpzipC0 . . . ptpCkqqrJs . . . Cnq

k P 1 . . . n^ DJ.vkrJs Ă E ^ freepJq Ă freepALLq

(lower-dimension-for-update)

fold r0 λ r k V . rrxc, ky :=Es
foldpr0rcsqλ r1 k V . r1rk :=Err1rks{rrxc, kyss

c is loop invariant; all accesses to r in E are rrxc, kys
fold r0 λ r k V . rrxk, cy :=Es

foldptpr0qrcsqλ r1 k V . r1rk :=Err1rks{rrxk, cyss
c is loop invariant; all accesses to r in E are rrxk, cys

Figure 3.12: Code motion rules for arrays and collections with multiple dimensions.

rules as well as to simplify computation. They also generate code which uses ++, an
operation shown in Figure 3.5. ++ takes two maps with the same type into a new map
which has as entries the union of the maps, and any matching keys taking their value
from the second map.

Figure 3.12 shows transformations on operators going over collections with multiple
dimensions.

3.8.5 Monoid-based Transformations

Various transformation rules rely on viewing the map data structure as a monoid,
i.e., a set with an associative binary operator and an identity element. Its identity is
an empty map, while its “plus” operation (denoted by ‘) is based on the “plus” of its
value type parameters.

The sum of two maps, i.e., a‘ b, is another map with the same keys and, as values,
the sum of their values. If a value is missing in either map, it is replaced by the value
type’s zero. At the bottom of Figure 3.5 we give a possible implementation for the ‘
based on zip.

Identifying computation that can be seen as operating over monoid structures allows
further optimizations, since we can exploit associativity to expose more parallelism.

38

(eliminate empty fold)

fold r0pλ rKV . rrK :=V sqd
r0 ++ d

(eliminate empty map)

mappλ rV . V qd
d

(fold Ñ size)
fold r0 λ r I . r ` E
λx .E ˚ psizexq ` r0 @i P I.i R E

(reduce by key)

pmap λK V . sizeV q ˝ pgroupByλP .Eq
preduceByKey`q ˝ pmapλP .pE, 1qq

(transpose of transpose)

pt ˝ tq a
a

(factor out store)

fold r1 λ r i . rrE :=Bs
r1rE := fold r1rEsλ k .Brk{rrEsss i R E ^ r R E

(apply store)

rrI :=E0srI :=E1s
rrI :=E1rE0{prrI :=E0srIsqss

Figure 3.13: Simplifying and enabling transformation rules.

39

(eliminate null check)

if arks ““ null then 0 else arks
arks a is a monoid with 0 as identity

(identify map monoid plus)

mappλ i x y . x‘ yqpzipA Bq
A‘B

A and B are MrT s monoids
‘ is the plus for T
‘ is the plus for MrT s

(swap map and fold)

pfold r0 ‘q ˝ pmap fq
λ c .pr0 ‘ fpfold 0‘ ‘q cqq

map over monoid ‘, 0‘

@ab.fpa‘ bq “ fpaq ‘ fpbq

(flatMap)

pfold r0 ‘q ˝ pmap fq
r0 ‘ flatMap f

fold over the monoid ‘, 0‘

Figure 3.14: Monoid-based rules

Figure 3.14 shows our set of monoid-based transformation rules. The first two rules are
“enabling” rules that make code more amenable to other optimizations, while the final
rule is itself an optimization.

To illustrate the “eliminate null check” rule in Figure 3.14, let us revisit an interme-
diate expression from the motivating example:

let prev “ mrws in
mrw :=pif prev ““ null then 0 else prevq ` 1s

(3.17)

Here, the conditional block can be eliminated by considering m a monoid with 0 as
the identity element. Applying the rule yields:

let prev “ mrws in mrw := prev ` 1s (3.18)

This transformation enables other optimizations by giving the code a more uniform
structure.

40

In Section 3.4 we showed how the inner loop of the WordCount code of Figure 3.1 is
transformed to a MapReduce form. We now explain the last two rules of Figure 3.14 by
showing how they are used to optimize the full loop nest. The inner loop of Figure 3.1
iterates over each line in the input. After beta reduction, and without assuming m is
initially empty as we did in Section 3.4, its optimized form is:

pmapλ k v .mrks ` size vq ˝ pgroupBy idq (3.19)

Placing this code in the context of the IR for the outer loop yields, after applying
some non-monoid rules:

foldmλm xi, docy .
let do_count “ pmapλ k v . size vq ˝ pgroupBy idq in
m ++ ppmapλ kxv1, v2y . v1 ` v2q

pzip m pdo_count psplit docqqqq

(3.20)

We can simplify this program using the “identify map monoid plus” rule in Figure 3.14.
The m map and the value of pdo_count psplit docqq are both maps from strings to
numbers. Integer numbers are monoids with arithmetic addition as plus, so our maps
can be seen as monoids with the ‘ operator defined in Figure 3.5. Zipping two monoids
and adding up their corresponding values, as done above, is simply an implementation
of the ‘ operator. Thus, applying the rule rewrites the code to:

foldmλm xi, docy .
let do_count “ pmapλ k v . size vq ˝ pgroupBy idq in
m‘ pdo_count psplit docqq

(3.21)

do_count psplit docq does not depend on the m parameter, so can be extracted to
a map using the “extract map from fold rule” — see Section 3.8.1. Furthermore, the
resulting map is split into a composition of maps through fission. The computation

41

reaches this form:

let foldDocCount “ foldmλm xi, docCounty .
m‘ docCount in

foldDocCount ˝
pmapλ i groups .pmapλ k v . size vq groupsq ˝
pmapλ i split . groupBy id splitq ˝
pmapλ i doc . split docq

(3.22)

While the above computation reveals significant parallelism, the final fold, which
merges the word count map for each document, is inefficient: it repeats the work of
grouping results by word and summing counts. Notice that instead of doing all the
operations for each doc and merging the results at the end, the program could start by
merging all the docs and then computing word counts on the result. The “swap map

with fold” shown in Figure 3.14 achieves this transformation.
“swap map with fold” rewrites a composition of a fold over a monoid of MrBs using

the monoid’s plus (‘) with a map using function f : A Ñ B into an application of
f to the result of folding over maps input using monoid A’s plus (‘). The original
value r0 is also ‘-added. Notice that the transformation eliminates the map operation,
replacing it with a single application of f . Depending on the cost of f , this may result in
significant speedups. The operation is correct as long as f distributes over the monoid
pluses, i.e., @ a b . fpa‘ bq “ fpaq ‘ fpbq.

All three map functions in the above programs have distributive operations. Guided
by our cost function, Mold applies the “swap map with fold” rule two times and does
two reductions of operations with identity. After some restructuring for readability, we
reach the following program:

let foldBagPlus “ fold 0Bag λ allWords xi,wordsy .
allWords ‘Bag words in

letmapToSize “ mapλ k v . size v

in λ input .m‘ pmapToSize ˝ pgroupBy idq ˝
foldBagPlus ˝ pmapλ i doc . split docqq input

(3.23)

foldBagP lus is the counterpart of foldDocCount from the previous code version

42

but, instead of merging count maps, it now merges Bags of words. A map followed by
a folding of the Bag is equivalent to a Scala flatMap operation, as expressed by the
“flatMap” rule in Figure 3.14. Applying the rule bring the above program to:

letmapToSize “ mapλ k v . size v

in λ input .m‘ pmapToSize ˝ pgroupBy idq ˝
pflatMapλ i doc . split docqq input

(3.24)

The groupBy generates a Map from words to Bags of words, which can be expensive
in terms of I/O. As we are only interested in the size of the Bag, the program is
transformed (by the “reduce by key” rule in 3.13 from Section 3.8.4) to:

letmapToSize “ mapλ k v . size v

in λ input .m‘ preduceByKey`q ˝
pmapλ i word .pword, 1qq ˝
pflatMapλ i doc . split docqq input

(3.25)

The Bag of words maps to a Bag of pword, 1q pairs. reduceByKey groups the “1”
values by key (i.e., word) and reduces each group using ` operation, which is equivalent
to the previous counting but does not generate a Bag of identical words for each key
(i.e., for each word).

3.9 Implementation

We present some details regarding Mold’s implementation by following through the
transformation phases in Figure 3.3.

The translation from Java to Array SSA is an extension of the SSA implementation
in WALA [14] to handle arrays and collections. The translation from Array SSA to the
Lambda IR is implemented in Scala.

For the rewrite system we extended Kiama [15], a strategy-based term rewriting library
for Scala. We added support for state exploration, name-bindings aware operations
(e.g., “subexpression of”), and cost-guided exploration modulo αβ-conversion.

Mold renames variables where necessary to solve name conflicts, and flattens let

43

expressions to improve performance by the following rule:

letx “ plet y “ Ey inExq in ...
let y “ Ey in pletx “ Ex in ...q (3.26)

The flattened let constructs translate to cleaner Scala code with less block nesting.
Mold generates Scala code from the lambda calculus IR by syntactic pretty-printing
rules like (S is a function translating to Scala):

SpλV . F q Ñ {SpV q=>SpF q} (3.27)

The let expressions are transformed to value declarations:

letX “ Y inZ Ñ val SpXq = SpY q ; SpZq (3.28)

The Scala code is emitted using Kiama’s pretty printing library [41] and Ramsey’s
algorithm [42] for minimal parenthesization.
The built-in data structures (Figure 3.5) roughly follow Scala collection library’s

conventions. Code generated by our tool can be executed as traditional Scala code by
simple implicit conversions [43]. The same code can be executed either sequentially or
using the Scala parallel collections [44]. In a similar manner, we also provide a backend
based on the Spark MapReduce framework [12]. This allows programs generated by
Mold to be executed on Hadoop YARN clusters [45].

3.10 Evaluation

We now present an experimental evaluation designed to answer the following research
questions:

1. Can Mold generate effective MapReduce code?

We define effective code as satisfying three conditions:

(a) It does not have redundant computation.

(b) It reveals a high level of parallelism.

(c) Its accesses to large data structures are localized, enabling execution on
distributed-memory MapReduce platforms.

44

A
lg
or
it
hm

#
lo
op

ne
st
s

#
lo
op

s

Tr
an

sl
at
io
n
ti
m
e(
s)

f
o
l
d
Ñ

f
o
l
d
˝ m

a
p

f
o
l
d
Ñ

g
r
o
u
p
B
y

Lo
ca
liz
at
io
n

O
pt
im

iz
at
io
n
&

E
na

bl
in
g

M
on

oi
d

T
ot
al

WordCount 1 1 11 1 1 3 7 3 15
Histogram 1 1 233 0 3 1 11 3 18
Linear Regression 1 1 28 1 0 1 0 0 2
String Match 1 1 68 1 0 1 0 0 2
Matrix Product 1 3 40 4 0 2 14 0 20
PCA 2 5 66 10 0 1 4 0 15
KMeans 2 6 340 5 0 1 4 0 10

Table 3.1: Evaluation programs and applied transformations

2. Is Mold efficient?

We measure how long it takes for Mold to find an effective solution.

3. Is the proposed approach general?

We show that the core rewrite rules are general and match many code scenarios.
Also, we discuss how our cost optimization approach can generate effective
solutions for different execution platforms.

To answer these questions, we study the results of using Mold to translate several
sequential implementations of the Phoenix benchmarks [10], a well-established MapRe-
duce benchmark suite which provides both MapReduce and corresponding sequential
implementations.

The benchmark suite provides C implementations while our system expects Java code
as input. We do a manual, straightforward, syntactic, translation of the C sequential
implementations to Java. We transform C struct to simple Java data classes, functions
to static methods, and arrays to Java arrays. Since Java does not have native multi-
dimensional arrays, we use a separate Java class implementing two-dimensional array
behavior. Also, because Mold takes a single Java method as input, we inline methods
that contain significant parts of the computation.

45

Furthermore, we manually implemented and tuned each of the benchmarks in Scala
to provide a baseline against which we compare the performance of the Mold-generated
code variants (see Section 3.9). We derived three hand-written implementions: the
first uses sequential Scala collections, the second uses parallel Scala collections, and the
third use Spark [12]. We did not directly use third-party implementations since in some
cases they do not exist, and in other cases they introduce optimizations orthogonal to
the translation to MapReduce (e.g., they use the Breeze [46] linear algebra library).

To gauge the quality of the code generated by Mold we pass each program through
our tool, we execute the resulting code and hand-written implementations, and we
measure and evaluate the results. For each program:

• We measure Mold’s execution time and log the sequence of applied rules to reach
the optimal solution.

• We check that the transformations preserved the semantics of the original. program
by executing both the original program and the generated one on the same input
data set and asserting that the results are the same.

• We manually inspect the code to check whether the operators going over large
input data sets have been parallelized, and whether data accesses have been
localized.

• We execute the generated code with the three backends described at the end of
Section 3.9, and then we execute the hand-written implementations on the same
data sets.

When comparing with hand-written implementations, we execute each version of a
benchmark on the same dataset five times within the same JVM instance. We report
the average of the measurements after dropping the highest and lowest time values. We
run the experiments on a quad-core Intel Core i7 at 2.6 GHz (3720QM) with 16 GB of
RAM. Mold’s rewrite system state exploration is parallelized.

3.10.1 Can Mold Generate Effective MapReduce Code?

We discuss how Mold generates MapReduce code for each of the subject programs,
and how the generated code compares to hand-written implementations. Table 3.1
shows the number of loops and loop nests in the original programs, and gives the

46

translation time and a summary of the transformations applied in order to reach the
optimal version.

WordCount. Figure 3.1 shows the original sequential code, with the outer loop
iterating over documents, and the inner loop iterating over each word in each document
and updating a shared map (counts).
One of the solutions found by Mold is a map over all documents followed by a

fold. The map contains a groupBy operation which computes a word count for each
document (facilitated by the “fold to groupBy” rule). The fold merges the word
counts across documents. While this is a good solution, merging word count maps may
be expensive. Using the “swap map with fold” rule, Mold moves the fold operation
up the computation chain. In this way it reaches a form similar to the traditional
MapReduce solution for the WordCount problem. The documents are split into words,
which are then shuffled (groupBy) and the numbers of elements in each word bucket is
counted.

The generated code exposes the maximal amount of parallelism for this case, and all
accesses are localized so the code is distributable. Appendix 5 lists the transformation
steps taken by the tool to reach the solutions discussed above.

Histogram. This benchmark poses a similar challenge to WordCount. It computes
the frequency with which each RGB color component occurs within a large input data
set. Mold generates a solution similar to WordCount. It first groups each color
component by its values, and then maps to the size of the groups. Given a cost function
which puts a higher weight on groupBy operations, Mold can also generate a solution
where the input data set is tiled and a map goes over each tile to compute its histogram,
and the resulting histograms are merged by a final fold. This is similar to the approach
taken by the Phoenix MapReduce solution.

The generated code is parallel and accesses are localized. The Phoenix implementation
assumes the input is a single array encoding the RGB channels. The “fold vertical
fission” rules split the computation by channel but cannot eliminate the direct stride
accesses to the input array. To localize the accesses, the tool assumes the MapReduce
implementation has a function selectEveryWithOffset(k,o) which takes every kth
element of the input starting with offset o.

47

Linear Regression and String Match. These two benchmarks are less challenging.
Mold brings them both to a parallelized and localized form by an application of
“extract map from fold” followed by an application of “localize map accesses”.

Matrix Product. Matrix multiplication is a classic problem with many possible
parallel and distributed implementations. The solution reached by Mold under the
cost function targeting MapReduce is a nesting of three map operators. Considering
the input arrays a and b, the outer map goes over a’s rows, the middle map goes over
b-transposed’s rows, i.e., it goes over b’s columns. The inner operation zips a’s row
with b’s column, then it maps with the multiplication operation, and finally it sums
up the products. The generated code allows fine grained parallelism and it has good
localization of accesses.

PCA and KMeans. Generally, for these benchmark the generated code exposes
good parallelism and access localization, but the generated code is not optimal. In
PCA, there are three redundant maps and one redundant fold, out of a total of twelve
operators. They are left over due to some limitations of our code motion rules in handling
complex tuple structures. In both cases the transformation leaves some additional no-op
restructuring of the results at the end of the computation pipeline. Considering that
the transformation is source-to-source, a programmer could identify and fix these issues,
while still benefiting from having most of the algorithm well parallelized.

Backends

For five of the benchmarks, the Scala generated code type-checks. For the remaining
two, we had to add types where Mold could not infer them due to type erasure in the
input Java bytecode. Using the backends described in the Section 3.9, we were able to
execute all benchmarks using the Scala collections, and we were able to execute five of
the benchmarks on Spark. The remaining two benchmarks, KMeans and PCA, were
not executable on Spark due to current limitations of the framework (it does not allow
nested distributed data structures).

Comparison with Hand-Written Implementations

Table 3.2 compares the execution time of the generated code and hand-written
implementations. Columns 2 and 3 show the execution time of the generated code

48

Scala

program generated hand-written

sequential parallel sequential parallel

WordCount 42.31 17.38 35.58 14.94
Histogram 9.65 7.17 9.98 6.60
LinearRegression 13.77 11.00 13.08 10.60
StringMatch 8.65 3.81 2.58 0.68
MatrixProduct 8.81 2.05 0.41 0.48
PCA 7.02 14.86 3.53 0.77
KMeans 11.90 40.31 0.61 0.89

Spark

program generated hand-written

1-thread 8-thread 1-thread 8-thread

WordCount 5.99 2.41 5.93 2.42
Histogram 8.84 2.42 8.65 2.59
LinearRegression 1.15 0.62 1.03 0.51
StringMatch 4.78 1.92 4.48 1.57
MatrixProduct 9.02 2.29 5.90 1.58
PCA - - - -
KMeans - - - -

Table 3.2: Execution results.

using sequential and parallel Scala collections, respectively. Similarly, columns 4 and 5
show the hand-written implementations using sequential and parallel Scala collections,
respectively. Columns 6 and 7 show the results of executing the generated code using
Spark with either 1 or 8 hardware threads. Columns 8 and 9 show the corresponding
results when executing the hand-written Spark implementations.
The generated versions using parallel Scala collections are between 23% and 80%

faster than the generated sequential versions, with the exception of PCA and KMeans
which exhibit a slowdown when executed in parallel. The generated code for these
two benchmarks was found to contain significant redundant computation that severely
impacts the performance of the parallel code.

Comparing the executions of the generated and hand-written versions that use parallel
Scala collections, we found the former is 4%-16% slower for WordCount, Histogram,
and LinearRegression, 4x-6x slower for StringMatch and MatrixProduct, and at least
one order of magnitude slower for PCA and KMeans (for the reason explained earlier).

49

The 8-thread Spark-based versions of WordCount, LinearRegression, and StringMatch
are faster than the Scala-based ones. We believe Spark gains this advantage by caching
intermediate results and by using memory mapping for IO. The generated Spark codes
for WordCount and Histogram are slightly faster (1% and 7% respectively) than the
hand-written Spark versions. The remaining benchmarks are 22%-45% slower. As
explained earlier, the generated code for KMeans and PCA relies on nested distributed
data structures, which are not currently supported in Spark.

3.10.2 Is Mold Efficient?

Table 3.1 reports the Mold execution time in column 4. For all but one program, the
tool reaches the solution in under 4 minutes, and in some cases, Mold is fast enough
that it could run interactively, with the programmer getting the translated code within
tens of seconds. The outlier is KMeans, which is a larger program compared to the
others and has separated nested loops and complex control structure.

3.10.3 Is the Proposed Approach General?

We say that a rewrite rule set is general if it can be used to reach effective solutions
for multiple programs, and each good solution depends on the application of multiple
rules. Columns 5-9 of Table 3.1 show, for each program, the number of applications for
each of the rule groups presented in Section 3.8.

The “extract map from fold” rule (column 5) is required in all but one of the programs.
The “fold to groupBy” rule (column 6) is used for WordCount and Histogram, the
two programs with indirect accesses. Upon inspection, we found that the previous two
rules parallelized the computationally expensive sections of the programs. Furthermore,
the access localization rules are useful in all cases (column 7).
With the exception of Linear Regression and String Match, all other programs also

require the application of classic loop optimization and code motion transformations.

3.11 Related Work

We discuss other approaches to taking code expressed as a non-parallel program and
either executing it in parallel or transforming it to a form that can be executed in
parallel or on a distributed system.

50

3.11.1 Inspector-Executor

Mold exposes parallelism using the fold to groupBy rewrite that introduces shuffle
operations to move data to computation. This particularly benefits imperative loops
that update a global data structure with irregular access patterns, as in WordCount.

The above computation structure is similar to that of inspector-executor frameworks
where, at runtime:

• An inspector curates data access patterns for a loop body and determines an
ordering for retrieving data values.

• An executor fetches the values from remote memory locations in the specified
order and executes the loop body.

This model is used for irregular reference patterns over sparse data structures to
improve spatial locality and hide memory access latency.
Initial inspector-executor transformations were applied manually [39]. Numerous

advances have automated the process and introduced advanced data reordering that
combine static and runtime analysis (e.g., [47] and [48]). In [47], the authors showed
that sequences of loop transformations (e.g., data reordering, iteration reordering, tiling)
can be legally composed at compile time to yield better performance for indirect memory
references.

Mold differs from inspector-executor models in a number of ways. By rewriting
loops into a functional style with high-level operators, we retain a level of abstraction
that is not available when loops are decomposed into explicit inspector and executor
loops. Further, Mold operators may be mapped to more general parallel execution
frameworks that include MapReduce, as we have shown in this paper.

3.11.2 Source-to-Source Transformation

MapReduce offers a programming model for parallel computing that is convenient
and scalable, for applications that fit the paradigm. It frees the programmer from the
burden of orchestrating communication in a distributed or parallel system, leaving such
details to the MapReduce framework which may offer other benefits as well. For this
reason, it is often the target of compilation from annotated sequential codes or domain-
specific languages. In our work, we aimed to apply a source-to-source transformation
to MapReduce directly from unmodified sequential (Java) code.

51

The prevalence of general purpose GPUs has catalyzed the interest in source-to-source
transformations from sequential codes to parallel orchestration languages (e.g., OpenMP,
OpenCL) or GPU languages (e.g., CUDA).

In [49] for example, a number of these approaches are evaluated and a new skeleton-
based compiler is described. A common theme in these efforts is the reliance on a
programmer to identify and annotate their source code to aid the compiler in generating
a suitable and correct parallel implementation.
In comparison, Mold automatically discovers if a loop is suitable for translation

into a MapReduce style and applies term rewriting rules to enumerate a number of
candidate implementations.
In [38], the author describes a compiler analysis for recognizing parallel reductions.

This analysis relies on array dataflow analysis [50] to summarize data that is reachable
and modified within a loop, and is applicable when memory aliases can be disambiguated.
An important differentiator in our work is the use of groupBy which affords the ability
to resolve data aliases via MapReduce shuffle operations.
The Mold internal representation is derived from a program in array SSA form,

extending previous observations that a program in SSA form is essentially a functional
program [36, 37]. This functional representation is the basis for the transformations
described in this dissertation to rewrite imperative loops into a MapReduce style. Mold

leverages the power of functional programming [51] and its algebraic properties [52, 53].
We use many of these properties in the optimization rules described in Section 3.8.

There is also work on refactoring toward parallelism or a more functional form. For
example, [54] proposes a refactoring tool to parallelize Java loops, and [55] presents
an automated refactoring of Java code to use the Java 8 collection operators. Both
approaches transform the original program AST directly and are limited to specific
access patterns.

3.11.3 Program Synthesis

An extensive body of work concerns the use of program synthesis techniques to
generate efficient code. Particularly relevant to our work is superoptimization, where
program forms are enumerated and checked against supplied test cases to find a
desired code sequence. This may be exhaustive as in the original superoptimizer,
goal-oriented [30], or stochastic [31]. In many of these applications, the context is a
peephole optimizer that reorders the instructions of a critical inner loop at ISA-level.

52

This is also the case for component based program synthesis [56]. In contrast, our work
is a source-to-source transformation that applies a much larger scale refactoring to loops
from an imperative code sequence to a functional MapReduce style.

53

Chapter 4

Inferring Program Transformations

In this chapter we present a way to infer program transformations by using pattern
generalization, which, to our knowledge, is a novel approach. Previous approaches have
either looked at pattern generalization from a purely theoretical perspective, or have
taken more ad-hoc approaches to inferring program transformations.

We introduce a novel technique and algorithm for generalization/learning of rewrite
rules from multiple transformation examples. More precisely, the algorithm generalizes
from term patterns with associative symbols and context variables, as explained above.
Further, we show how the pattern generalization algorithm can be used to generalize
rewrite rules in a straightforward manner. Finally, we give an optimized implementation
together with a thorough evaluation showing the feasibility of the approach on learning
fixes for linting tool warnings.
Our algorithm for generalizing from rewrite examples to a rewrite rule is based on

two key advances. We begin with the technique of Alpuente et al. [8] for generalizing
patterns, albeit in a manner that cannot introduce contexts. Our first advance is to
extend this technique to introduce contexts during generalization, in a manner that
produces readable results and runs efficiently in practice (Section 4.4). Second, we show
that our pattern generalization algorithm can be extended to generalize rewrite rules
by simply treating a rewrite rule as a pair of patterns, with some post-generalization
filtering to ensure the final output is a well-formed rewrite rule (Section 4.10).

The work presented in this chapter was done in collaboration with Manu Sridharan,
Satish Chandra, Andrei S, tefănescu, and Grigore Ros,u.

4.1 Problem

In this section we give an overview of our technique. We show an example of a
useful program transformation and explain what would be necessary to automate this
transformation (Section 4.1.1), how our approach works on the example (Section 4.1.2),
and why other tools cannot learn or even express this transformation (Section 4.1.3).

54

4.1.1 What Is Necessary

One class of common, repetitive, and tedious program transformations is fixing the
problems reported by various code quality checkers, such as linting tools. One such
problem, detected by the popular ESLint [23] linter, is making an assignment within a
conditional, e.g., within the condition of an if statement. This is a bad programming
practice as the assignment, denoted with the = operator, can easily be confused with an
equality check, denoted with the == operator.

Figure 4.1 shows two concrete code examples exhibiting the problem above, and their
respective fixes. The code above the rewrite arrow is taken from real-world code and
has been automatically marked by ESLint as having the problem. Both snippets of
code contain an assignment within the conditional of the if statement. One way to
fix this problem is to hoist the assignment to just before the if statement. The code
snippets below the rewrite arrow show the respective fixes.

This fix is correct as long as the expressions in the conditional before the assignment
do not have side effects which would affect the assigned expression. Checking or proving
this correctness property is beyond the scope of this work but, as we will discuss in
Section 4.9, our approach does lend itself to verification.

Before discussing inference of transformation rules, let us consider what is needed to
even express a transformation rule that handles both of the examples in Figure 4.1:

(i) The rule must be able to match syntactic elements (i.e., parts of the AST), like
the “then” branch of the if statement, and preserve them after the rewrite.

(ii) The transformation must be able to replace the content of a syntactic element,
like the condition of the if statement. Crucially, this replacement must be able
to preserve immediately-surrounding code not relevant to the transformation;
e.g., the conjuncts hooks && ’set’ in hooks && notxml in the conditional of the
left example in Figure 4.1 should be preserved, even though the assignment is
extracted.

To express such transformations, we need rules that use context variables, capable of
matching over arbitrary contexts, like in Felleisen and Hieb [9] and supported by several
modern rewriting/reduction engines specialized for programming language syntax and
transformation, such as PLT-Redex [18], K [19], and Spoofax [20]. Consequently, our
learning algorithm is capable of learning rules with not only associative symbols, but

55

i
f
(
h
o
o
k
s
&
&
’
s
e
t
’
i
n
h
o
o
k
s
&
&
n
o
t
x
m
l
&
&

(
r
e
t
=
h
o
o
k
s
.
s
e
t
(
e
l
e
m
,
v
a
l
u
e
,
n
a
m
e
)
)
!
=
=
u
n
d
e
f
)
{

r
e
t
u
r
n
r
e
t
;

}
e
l
s
e
{

e
l
e
m
.
s
e
t
A
t
t
r
i
b
u
t
e
(
n
a
m
e
,
v
a
l
u
e
+
’
’
)
;

r
e
t
u
r
n
v
a
l
u
e
;

}

i
f
(
a
p
p
U
r
l
=
b
e
g
i
n
s
W
i
t
h
(
a
p
p
B
a
s
e
N
o
F
i
l
e
,
u
r
l
)
)
{

r
e
w
r
i
t
t
e
n
U
r
l
=
a
p
p
B
a
s
e
+
h
a
s
h
P
r
e
f
i
x
+
a
p
p
U
r
l
;

}
e
l
s
e
{

i
f
(
a
p
p
B
a
s
e
N
o
F
i
l
e
=
=
=
u
r
l
+
’
/
’
)
{

r
e
w
r
i
t
t
e
n
U
r
l
=
a
p
p
B
a
s
e
N
o
F
i
l
e
;

}
}

ó
ó

r
e
t
=
h
o
o
k
s
.
s
e
t
(
e
l
e
m
,
v
a
l
u
e
,
n
a
m
e
)
;

i
f
(
h
o
o
k
s
&
&
’
s
e
t
’
i
n
h
o
o
k
s
&
&
n
o
t
x
m
l
&
&

(
r
e
t
)
!
=
=
u
n
d
e
f
)
{

r
e
t
u
r
n
r
e
t
;

}
e
l
s
e
{

e
l
e
m
.
s
e
t
A
t
t
r
i
b
u
t
e
(
n
a
m
e
,
v
a
l
u
e
+
’
’
)
;

r
e
t
u
r
n
v
a
l
u
e
;

}

a
p
p
U
r
l
=
b
e
g
i
n
s
W
i
t
h
(
a
p
p
B
a
s
e
N
o
F
i
l
e
,
u
r
l
)
;

i
f
(
a
p
p
U
r
l
)
{

r
e
w
r
i
t
t
e
n
U
r
l
=
a
p
p
B
a
s
e
+
h
a
s
h
P
r
e
f
i
x
+
a
p
p
U
r
l
;

}
e
l
s
e
{

i
f
(
a
p
p
B
a
s
e
N
o
F
i
l
e
=
=
=
u
r
l
+
’
/
’
)
{

r
e
w
r
i
t
t
e
n
U
r
l
=
a
p
p
B
a
s
e
N
o
F
i
l
e
;

}
}

F
ig
ur
e
4.
1:

B
ef
or
e-
an

d-
A
ft
er

C
od

e
E
xa

m
pl
es

O
fH

oi
st
in
g
an

A
ss
ig
nm

en
t
O
ut

of
an

i
f
C
on

di
ti
on

al

56

if (cJx = vK) { t } else { e }

ó
x = v; if (cJxK) { t } else { e }

Figure 4.2: Program Transformation Rule Example

also with context variables. Then we show that these features allow us to learn complex
and powerful transformations directly from ground transformation examples.

Eelco Visser [57] gives a taxonomy of program transformations, and surveys rewriting
strategy approaches. Relevant to our approach are ELAN [58], Maude [59], and
Stratego [60], which are the inspiration for our strategy language. Related to the
evolutionary approach, Bournez and Kirchner [61] discuss the theoretical aspects of
extending ELAN with a probabilistic choice strategy.

4.1.2 How We Express the Transformation

Matching Logic provides a concise and easy-to-read way to express the transformation.
The rewrite rule in Figure 4.2 encodes the fix for the above issue. The expression before
the rewrite (i.e., above the bar), is the matched pattern. The italicized variables are
pattern variables that can match any term, where a term is a node in the AST. The
expression below the rewrite (i.e., below the bar), is the pattern for the rewritten term.
We see the same variables, but the code has been restructured. The body of the if is
preserved through the t variable, exemplifying how the rewriting language meets the (i)
requirement above. Furthermore, as explained below, the assignment is hoisted before
the loop while the conditional is changed appropriately, satisfying the (ii) requirement.
Variable c is an “anywhere” context variable and matches any term that contains,

at any depth within, at least one match of x = v. The assignment matched inside
c is hoisted before the loop. The conditional of the if remains unchanged, with the
exception of the assignment expression which is replaced by just x. The change to the
content of cJK encodes this transformation: the subterm matched by the pattern inside
cJx “ vK is replaced by whatever is matched by x. Looking at the example on the LHS
of Figure 4.1, x matches ret = hooks.set(elem, value, name), and, after the rewrite,
the rest of the condition is preserved while the assignment is replaced by just ret. Also,
the assignment is moved before the if statement.

57

4.1.3 Why Previous Approaches Fall Short

To our best understanding, previous approaches fall short of inferring, or even of
expressing, the transformation above.
Several lines of work express transformations as AST manipulating scripts. Kim

et al. [62] proposed inferring desired transformation as a composition from a set of
predefined transformation scripts. Meng et al. [1, 21, 22] advanced a line of work in
which they infer transformations which are represented as an abstraction over a sequence
of fine-grained insert/delete/update AST operations, coupled with data-flow conditions.
Negara et al. [2, 3] propose a different approach that is also based on sequences of
fine-grained AST operations, but the operations are recorded directly from the IDE,
and they use a data mining technique to identify interesting sequences. While all of
these techniques have shown success, their representation of program transformations
as sequences of fine-grained changes has several limitations.
In terms of expressing the transformation, previous approaches representing trans-

formations as fine-grained AST edit sequences [1, 2, 3, 16, 17, 21, 22] do have a way
of meeting the (i) requirement described at the end of Section 4.1.1, i.e., they do
have a concept of matching part of the AST and preserving it, possibly in a different
structure, after the transformation. For Figure 4.1, we believe these other approaches
could express the example transformation on the RHS. However, the example on the
LHS is trickier, as the assignment is deeper within the conditional. As explained in
Section 4.1.1, having a transformation that covers both examples requires a way of
traversing over the irrelevant parts of the conditional in a general way.

More specifically, these previous techniques could attempt to express the edits for this
transformation as an AST node update x = v ñ x followed by an insertion ε ñ x “ u

(we use our rewrite language for exemplification but the other approaches have various
different representations). The first fine-grained transformation could possibly be
applied correctly, provided other mechanisms ensure x and v only match within a
conditional — e.g., data flow techniques in the work of Meng et al. [1, 21, 22]. However,
the latter insertion transformation must apply only before the if statement where the
first transformation was applied. To our understanding, none of the approaches based
on transformation sequences can encode this restriction.

In terms of learning, the fine-grained transformation sequence approach is vulnerable
to small changes in the input sequences used for learning. Meng et al. [1] note this
problem as a threat to both the performance (i.e., can the algorithm generalize from

58

if (cJx = y(z)K) { t } else { e }

ó
x = y(z); if (cJxK) { t } else { e }

Figure 4.3: Rule Inferred from the Examples in Figure 4.1

the examples?) and correctness (i.e., is the generalization correct?) of their algorithm,
and Negara et al. [3] also mention it as a challenge for performance.

Finally, the fine-grained code changes coupled with custom match heuristics are hard
to present to the user in a form that is intuitive to understand and easy to adapt.
The non-standard representation also makes it difficult to establish any correctness
properties in the future.
Alpuente et al. [8] propose a generalization approach capable of inferring term

patterns with associative and commutative functions. Their approach is principled
and the correctness properties of their algorithm are formally proved. Still, because
their language has no equivalent of our contexts, it cannot handle cases such as our
motivating example.

4.2 Our Approach: Anti-Unification

The key contribution of our work is an algorithm for inferring powerful rules like that
of Figure 4.2 from examples. While developers could write such rewrite rules by hand,
having a system suggest them could significantly ease adoption. Writing a rewrite rule
by hand requires familiarity with both the rewriting language and the AST structure
of the language. For example, the initializer, condition, and step of a for loop must
be explicitly initialized as for(x, y, z) even when they are not relevant for the rewrite
and they are simply preserved, as the JavaScript AST structure must be preserved.
Furthermore, our system can be used in an interactive environment, e.g., monitoring
code edits and proposing a rule on the fly when similar changes are being applied.
Starting with the two examples in Figure 4.1, there are infinitely many way to

generalize them to a rewriting rule in our language. Interesting for us are the most
specific generalizations (abbreviated as “MSGs” from here on), i.e., generalizations which
preserve the behavior of the original rewrite rules and transform a minimum of other
terms. Given a MSG, it is straightforward to generalize further by collapsing sub-patterns
into either contexts or variables. Hence, the MSGs are a compact representation of all

59

possible generalizations, much like the compact version-space algebra representation
in other programming-by-example work [63, 64]. Our ability to cleanly separate
the necessary most-specific generalization from further heuristic generalization also
distinguishes our technique from previous work.

One of the possible MSGs for the examples in Figure 4.1 is shown in Figure 4.3. This
rule is more specific than the one in Figure 4.2, as it only matches assignments where
the right-hand side is a method call, expressed by y(z). It is possible to obtain the more
general rule in Figure 4.2 by directly generalizing the Figure 4.3 rule, i.e., by collapsing
the method call to a variable. In order to obtain the Figure 4.2 rule, the developer can
now either adjust the rewriting rule directly as they see fit, or they can give the tool an
additional example to help it generalize further.

Algorithmic Challenges and Contributions

No extant technique can infer the MSGs described above. The closest technique is
that of Alpuente et al. [8], which can generalize from pairs of patterns that may include
associative operators. Alpuente et al.’s technique lacks two key features that we need:

1. The generalization must be able to introduce contexts, in order to infer rules like
that of Figure 4.2.

2. In our scenario, rather than just generalizing patterns used for matching, we must
generalize rewrite rules.

To address the first issue, we extend Alpuente et al.’s technique to introduce contexts
in a manner that explores all possible nestings between pairs of patterns. Further, we
give techniques that simplify away unnecessary patterns introduced during this process.
We prove that this extended technique computes the MSGs expressible in our language.
We also describe optimizations that improve scalability of this technique in practice.

To extend the generalization to rewrite rules, we make the key observation that
a rewrite rule can itself be viewed as a pattern, consisting of two sub-patterns (the
left-hand side and right-hand side) connected by the symbol ñ. Treating rewrite rules
as patterns allows applying the pattern generalization algorithm directly: it discovers
common generalizations computed for the LHS and RHS patterns and ensures the same
pattern variable is used in both cases. Further, we describe how to handle cases where
the algorithm output does not have an obvious interpretation as a rewrite rule, e.g., if
some variables appear only on the RHS of the rule.

60

all sorts ::“Variable |Context

Pattern ::“ top sort
Variable ::“ a, b, c, ...
Context ::“VariableJPatternK

RewritingRule ::“Pattern ñ Pattern

Figure 4.4: Rewriting Language

In the following sections we present our rules for computing the MSGs. We first show
our rewriting language (Section 4.3), then talk about the structure of our generalization
transition system (Section 4.4), then explain the transition system’s inference rules
(Sections 4.5, 4.6, and 4.7), and then talk about how the final solutions are obtained
from the configurations of the transition system (Section 4.8). In Section 4.10 we use
these generic rules for the specific task of inferring program transformations.

4.3 Rewriting Language

Figure 4.4 sketches our pattern matching and rewriting language. The language
extends the syntax of an underlying programming language by allowing pattern-matching
Variables (distinguished by italics) or Contexts to appear anywhere in a syntax tree, as
indicated by the first production for “all sorts”. A pattern is simply the “top sort,” i.e.,
any valid syntactic construct in the programming language extended with Variables
and Contexts.

We restrict Contexts [9] to anywhere contexts, as explained below. cJpK is a context
pattern which allows p to match anywhere within the current term. The match is
successful if there exists at least one such match. On success, the context variable c is
bound to the current term with the inner term replaced by a “hole” marker, denoted by
a special variable ˝. For example, cJbarpxqK matches foopbarpbuzqq with substitution
c ÞÑ foop˝q ^ x ÞÑ buz. When the inner pattern p matches in multiple places, each
match generates a distinct solution. For example, cJbarpxqK matches foopbarpbarpbuzqqq
with two solutions: c ÞÑ foop˝q ^ x ÞÑ barpbuzq and c ÞÑ foopbarp˝qq ^ x ÞÑ buz.

A rewriting rule consists of a left-hand-side and right-hand-side pattern, with the
standard meaning: when a term matches the left-hand side pattern, rewrite it to the
right-hand side pattern, preserving the variable bindings from the LHS. Rewrite rules

61

〈 i
f
(
h
o
o
k
s
&
&
..
.
)
{

r
e
t
u
r
n
r
e
t
;

}
e
l
s
e
{
..
.
}

ñ
r
e
t
=
h
o
o
k
s
.
s
e
t
(
..
.)
;

i
f
(
..
.
&
&
(
r
e
t
)
!
=
=
u
n
d
e
f
)
{

r
e
t
u
r
n
r
e
t
;

}
e
l
s
e
{
..
.
}

x 4 “
i
f
(
a
p
p
U
r
l
=
..
.)

{
r
e
w
r
i
t
t
e
n
U
r
l
=
..
.;

}
e
l
s
e
{
..
.
}

ñ
a
p
p
U
r
l
=
b
e
g
i
n
s
W
i
t
h
(
..
.)
;

i
f
(
a
p
p
U
r
l
)
{

r
e
w
r
i
t
t
e
n
U
r
l
=
..
.;

}
e
l
s
e
{
..
.
}

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

H

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

id

〉

(a
)
Ós

ol
ve
x
by

D
ec
om

po
si
ng

on
ñ

(r
ul
e
sh
ow

n
in

F
ig
ur
e
4.
8
an

d
ex
pl
ai
ne
d
in

Se
c
4.
5)

〈i
f
(
h
o
o
k
s
&
&
..
.
)
{

r
e
t
u
r
n
r
e
t
;

}
e
l
s
e
{

e
l
e
m
.
s
e
t
A
t
t
r
i
b
u
t
e
(
..
.)
;

r
e
t
u
r
n
v
a
l
u
e
;

}

x
a 1 4 “

i
f
(
a
p
p
U
r
l
=
..
.)

{
r
e
w
r
i
t
t
e
n
U
r
l
=
..
.;

}
e
l
s
e
{

i
f
(
..
.)

{
..
.
}

}

^
r
e
t
=
..
.;

i
f
(
..
.)

{
..
.

}
e
l
s
e
{
..
.
}x

a 2 4 “
a
p
p
U
r
l
=
..
.;

i
f
(
..
.)

{
..
.

}
e
l
s
e
{
..
.
}ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

H

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

x
ÞÑ
x
a 1
ñ
x
a 2

〉

(b
)
Ós

ol
ve
x
a 1
by

D
ec
om

po
si
ng

on
th
e

i
f
st
at
em

en
t
(r
ul
e
sh
ow

n
in

F
ig
ur
e
4.
8
an

d
ex
pl
ai
ne
d
in

Se
c
4.
5)

〈 ho
o
k
s
&
&
’
s
e
t
’
i
n
h
o
o
k
s
&
&

n
o
t
x
m
l
&
&

(
r
e
t
=
..
.)

!
=
=
u
n
d
e
f

x
b 1 4 “
a
p
p
U
r
l

=
b
e
g
i
n
s
W
i
t
h
(
..
.)
^

..
.
x
b 2 4 “
..
.
^

..
.
x
b 3 4 “
..
.
^
..
.ˇ ˇ ˇ ˇ ˇ ˇ ˇ

H

ˇ ˇ ˇ ˇ ˇ ˇ ˇ

x
ÞÑ
x
a 1
ñ
x
a 2
^

x
a 1
ÞÑ

i
f
(
x
b 1
)

{
x
b 2
}

e
l
s
e
{
x
b 3
}

〉

(c
)
Ós

ol
ve
x
b 1
by

C
on

te
xt

(l
ef
t)

(r
ul
e
sh
ow

n
in

F
ig
ur
e
4.
9
an

d
ex
pl
ai
ne
d
in

Se
c
4.
6)

〈 ’s
e
t
’
i
n
h
o
o
k
s
&
&

n
o
t
x
m
l
&
&

(
r
e
t
=
..
.)

!
=
=
u
n
d
e
f

x
c 1 4 “
a
p
p
U
r
l

=
b
e
g
i
n
s
W
i
t
h
(
..
.)
^
..
.ˇ ˇ ˇ ˇ ˇ ˇ ˇ

h
o
o
k
s

&
&

˝

cc 1 4 “
˝ˇ ˇ ˇ ˇ ˇ ˇ ˇ

x
ÞÑ
x
a 1
ñ
x
a 2
^

x
a 1
ÞÑ

i
f
(
x
b 1
)

{
x
b 2
}

e
l
s
e
{
x
b 3
}

x
b 1
ÞÑ
cc 1

Jx
c 1
K

〉

se
e
F
ig
ur
e
4.
6
..
.

Fi
gu

re
4.
5:

M
ot
iv
at
in
g
E
xa

m
pl
e
W
al
kt
hr
ou

gh
.
T
he

fr
es
h
va
ri
ab

le
na

m
es

fo
llo

w
th
e
na

m
in
g
co
nv

en
ti
on

s
fr
om

th
e
in
fe
re
nc
e

ru
le
s
in

F
ig
ur
es

4.
8,

4.
9,

4.
10

,a
nd

,t
o
pr
es
er
ve

un
iq
ue
ne
ss
,h

av
e
as

su
pe

rs
cr
ip
ts

th
e
le
tt
er

la
be

lo
ft

he
in
fe
re
nc
e
st
ep
.
W
e

ar
e
el
id
in
g,

vi
a
do

ts
,u

ni
nt
er
es
ti
ng

pa
rt
s
of

th
e
co
nfi

gu
ra
ti
on

s.

62

..
.f
ro
m

F
ig
ur
e
4.
5

(d
,e
,f,
g)
Óa

ft
er

fo
ur

m
or
e
C
on

te
xt

(l
ef
t)

in
fe
re
nc
e
st
ep
s
(r
ul
e
sh
ow

n
in

F
ig
ur
e
4.
9
an

d
ex
pl
ai
ne
d
in

Se
c
4.
6)

〈 r
e
t

=
h
o
o
k
s
.
s
e
t
(
..
.)

x
g 1 4 “

a
p
p
U
r
l

=
b
e
g
i
n
s
W
i
t
h
(
..
.)

^
..
.

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

h
o
o
k
s

&
&

˝

cc 1 4 “
˝
^’

s
e
t
’

i
n

h
o
o
k
s

&
&

˝

cd 1 4 “
˝
^

n
o
t
x
m
l

&
&

˝

ce 1 4 “
˝
^

˝
!
=
=

u
n
d
e
f

cf 2 4 “
˝
^

(
˝
)

cg 1 4 “
˝

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

x
ÞÑ
x
a 1
ñ
x
a 2
^

x
a 1
ÞÑ

i
f
(
x
b 1
)

{
x
b 2
}

e
l
s
e
{
x
b 3
}
^

x
b 1
ÞÑ
cc 1

Jx
c 1
K^

x
c 1
ÞÑ
cd 1

Jx
d 1
K^

x
d 1
ÞÑ
ce 1

Jx
e 1
K^

x
e 1
ÞÑ
cf 2

Jx
f 2
K^

x
f 2
ÞÑ
cg 1

Jx
g 1
K

〉

(h
,i)
Ós

ol
ve
x
g 1
by

D
ec
om

po
si
ng

on
th
e
as
si
gn

m
en
t
op

er
at
or

(=
),
fo
llo

w
ed

by
ap

pl
yi
ng

th
e
0-
ar
ity

ru
le

(F
ig
ur
e
4.
6)

on
x
h 1

〈 h
o
o
k
s
.
s
e
t
(
..
.)

x
h 2 4 “
b
e
g
i
n
s
W
i
t
h
(
..
.)
^
..
.ˇ ˇ ˇ ˇ ˇ

r
e
t

x
h 1 4 “
a
p
p
U
r
l
^
..
.ˇ ˇ ˇ ˇ ˇ

¨¨¨
^
x
g 1
ÞÑ

x
h 1
=
x
h 2

〉
(.
..
k,

..
.,

l)
Óa

ft
er

m
an

y
si
m
ila

r
st
ep
s
st
ar
ti
ng

on
th
e
R
H
S
of

th
e
re
w
ri
te
,i
.e
.,
st
ar
ti
ng

w
it
h
x
a 2

〈 ..
.

ˇ ˇ ˇ ˇ ˇ

r
e
t

x
h 1 4 “
a
p
p
U
r
l
^

r
e
t

x
l 1 4 “
a
p
p
U
r
l
^

h
o
o
k
s

&
&

˝

cc 1 4 “
˝
^

h
o
o
k
s

&
&

˝

ck 1 4 “
˝ˇ ˇ ˇ ˇ ˇ

..
.〉

(m
,n
)
Ói

de
nt
ify

vi
a
R
en
am

in
g
(F

ig
ur
e
4.
10

)
re
gu

la
r
va
ri
ab

le
s
x
h 1
w
it
h
x
l 1
an

d
co
nt
ex
t
va
ri
ab

le
s
cc 1

w
it
h
x
k 1

(n
ot
e
th
at
x
h 1
an

d
cc 1

co
m
e
fr
om

th
e
LH

S
of

th
e
re
w
ri
te

ru
le
s
an

d
x
l 1
an

d
x
k 1
co
m
e
fr
om

th
e
R
H
S;

al
so
,t
he

co
ns
tr
ai
nt
s
an

d
su
bs
ti
tu
ti
on

s
on

th
e
se
co
nd

lin
e
ar
e
on

ly
in
te
re
st
in
g
fo
r
th
e
ne
xt

in
fe
re
nc
e
st
ep
)

〈 ..
.

ˇ ˇ ˇ ˇ

r
e
t

x
h 1 4 “
a
p
p
U
r
l
^

h
o
o
k
s

&
&

˝

cc 1 4 “
˝
^’

s
e
t
’

i
n

h
o
o
k
s

&
&

˝

cd 1 4 “
˝
^
..
.

ˇ ˇ ˇ ˇ

¨¨¨
^
x
l 1
ÞÑ
x
h 1
^
x
k 1
ÞÑ
x
c 1
^

x
b 1
ÞÑ
cc 1

Jx
c 1
K^

x
c 1
ÞÑ
cd 1

Jx
d 1
K
〉

se
e
F
ig
ur
e
4.
7
..
.

F
ig
ur
e
4.
6:

M
ot
iv
at
in
g
E
xa

m
pl
e
W
al
kt
hr
ou

gh
(c
on

ti
nu

at
io
n

63

..
.f
ro
m

F
ig
ur
e
4.
6

(o
)
Ófl

at
te
ni
ng

co
nt
ex
ts
cc 1

an
d
cd 1

vi
a
th
e
C
on

te
xt

of
C
on

te
xt

in
fe
re
nc
e
ru
le

(s
ho

w
n
in

Fi
gu

re
4.
10

an
d
ex
pl
ai
ne
d
in

Se
c
4.
7)

〈 ..
.
ˇ ˇ ˇ

h
o
o
k
s

&
&

’
s
e
t
’

i
n

h
o
o
k
s

&
&

˝

cc 1 4 “
˝
^
..
.

ˇ ˇ ˇ
¨¨¨
^
x
b 1
ÞÑ
cc 1

Jx
d 1
K
〉

(.
..
)
Óm

an
y
st
ep
s

〈 H

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

h
o
o
k
s

&
&

’
s
e
t
’

i
n

h
o
o
k
s

&
&

n
o
t
x
m
l

&
&

(
˝
)

!
=
=

u
n
d
e
f

cc 1 4 “
˝
^

r
e
t

x
h 1 4 “
a
p
p
U
r
l
^

h
o
o
k
s
.
s
e
t

x
j 1 4 “
b
e
g
i
n
s
W
i
t
h
^
..
.

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

x
ÞÑ
x
a 1
ñ
x
a 2
^

x
a 1
ÞÑ

i
f
(
x
b 1
)

{
x
b 2
}

e
l
s
e
{
x
b 3
}
^

x
b 1
ÞÑ
cc 1

Jx
g 1
K^

x
g 1
ÞÑ

x
h 1
=
x
h 2
^
x
h 2
ÞÑ

x
j 1
(
x
j 2
)
^

x
a 2
ÞÑ

x
u 1
;
x
u 2
^
x
u 1
ÞÑ

x
l 1
=
x
l 2
^
x
l 1
ÞÑ
x
h 1
^
..
.

〉

F
ig
ur
e
4.
7:

M
ot
iv
at
in
g
E
xa

m
pl
e
W
al
kt
hr
ou

gh
an

d
F
in
al

C
on

fig
ur
at
io
n.

64

only match and rewrite the entire term, i.e., the rule itself is not applied anywhere
within a term.

In subsequent sub-sections, we describe an algorithm for generalizing from a pair of
patterns. To generalize from a pair of rewrite rules, one can simply treat each rewrite
rule as a pattern, with ñ treated as a regular, non-associative symbol. The final output
of the algorithm is then post-processed as explained in Section 4.9 to obtain the final
solution.

4.4 Transition System

We propose an algorithm for computing a set of most-specific generalizations, MSGs,
of two patterns from the language of Figure 4.4.
The generalization relation extends naturally to rewrite rules by seeing their LHSs

and RHSs as a pair. In general, a pair of patterns may not have a unique most-specific
generalization in our language, and hence our algorithm computes the set of all such
generalizations.

Similar to Alpuente et al. [8], we specify the computation of MSGs using a transition
system over configurations, with the transition relation given by a set of inference rules.

Each configuration is a triple of the form xC | S | θy. C is a conjunction of unsolved

generalization constraints. A generalization constraint is a triple t1
x
4“ t2 meaning that

patterns t1 and t2 must be generalized, with pattern variable x mapped to the resulting
generalized pattern in θ. S holds the solved generalization constraints, i.e., constraints
that have been solved yet are still required for the simplification steps in Section 4.7.

Constraints which have been solved yet are not required for other rules are discarded
by the inference rules. θ holds the generalization (partial) solution as an substitution, a
mapping from pattern variables to patterns.

To compute generalizations for terms t1 and t2, the initial configuration is xt1
x
4“ t2 | H | idy,

where id is the identity, i.e., empty, substitution.
Generalizing from our two examples in Figure 4.1 , t1 is the entire transformation on

the left, including the rewrite symbol (ñ), and t2 is the entire transformation on the
right.
The generalization is done via two sets of inference rules. The first set, shown

in Figures 4.8 and 4.9 and explained in Sections 4.5 and 4.6, perform the actual
generalization. For readability, each configuration is represented on three lines, with

65

each of its components occupying one line. The side conditions correspond to the
assumption of the inference rule.
Each rule advances the system from one configuration to one or more possible

subsequent configurations. The rules in this set are confluent, i.e., all application orders
lead to the same result. The algorithm terminates when no more rules apply, at which
point the rules from the second set are applied.
The second set of inference rules, shown in Figure 4.10, identifies identical sub-

patterns and eliminates equivalent contexts (see Section 4.7). The final solutions are
computed from θ in each final configuration (see Section 4.8).
Throughout the following sections we will refer to Figures 4.5, 4.6, and 4.7, which

show part of the inference steps taken by our tool to generalize the rewrite rule in
Figure 4.3 from the two transformations in Figure 4.1.

4.5 Preliminary Inference Rules

In this section we explain the inference rules for for generalization that do not
introduce contexts. These rules are shown in Figure 4.8. (Rules that introduce contexts
are discussed in Section 4.6.) The rules in this subsection are similar to the ones
proposed by Alpuente et al. [8], but they are not sorted and the variable inference
rule is missing completely, as it is replaced by our rules that introduce contexts (see
Section 4.6).

The Decompose rule in Figure 4.8 handles the generalization of two patterns generated
by the same non-associative function symbol f . The unsolved constraint is replaced
with unsolved constraints for each pair of subterms, in order, and a binding from x

to fpx1, ..., xnq is added to the substitution. Inference step (b) in Figure 4.5 shows
an instance of such a decomposition. The f symbol is the if statement, and the
rule generates three new constraints marked by variables xb1, xb2 and xb3, and adds a
substitution to wire them to the solution.

The Associative rule handles the cases where the common symbol generating the
terms is associative. We show the rule for left associativity; a symmetric rule for right
associativity is omitted for brevity. For JavaScript, lists of expressions and sequences of
statements are considered associative.

Given an associative binary operator f , we use fpx1, . . . , xnq as a shorthand represen-
tation for all equivalent ways of applying f to x1 to xn while maintaining order. The rule

66

(decompose)

C ^ fpt1, . . . , tnq
x
4“ fpt11, . . . , t1nq C ^ t1

x1
4“ t11 ^ ¨ ¨ ¨ ^ tn

xn
4“ t1n

S Ñ S
θ θ ^ x ÞÑ fpx1, . . . , xnq

f is not associative
x1 . . . xn: fresh variables
n ą 0

(associative, left)

C ^ fpt1, . . . , tnq
x
4“ fpt11, . . . , t1mq C ^ fpt1, . . . , tkq

x1
4“ t11^

fptk`1, . . . tnq
x2
4“ fpt12, . . . t1mq

S Ñ S
θ θ ^ x ÞÑ fpx1, x2q

f is associative
k P t1, . . . , n´ 1u
x1, x2: fresh variables
n ě 2 and m ě 2

(identity expansion, right)

C ^ fpt1, . . . , tnq
x
4“ t C ^ pfpt1, . . . , tnq

x
4“ fpe, tq_

fpt1, . . . , tnq
x
4“ fpt, eqq

S Ñ S
θ θ

f is associative
with identity e
t ‰ fp. . . q and t ‰ e
n ě 2

Figure 4.8: Generalization Inference Rules for Matching Without Contexts. Explained
in Section 4.5.

67

works by splitting generalization constraint in two, one generalizing a prefix of the left

term with the head of the right term (fpt1, . . . , tkq
x1
4“ t11), and the other generalizing the

postfix of the left term with the tail of the second term (fptk`1, . . . tnq
x2
4“ fpt12, . . . t1mq).

The constraints are connected through the x ÞÑ fpx1, x2q substitution. When the
associative symbol f has n children, we have n´ 1 direct subsequent configurations.
To illustrate how the rule works, consider the following configuration involving

instruction sequences:

xi1;i2;i3
x
4“ i1;i3 | H | idy (4.1)

The ; operator is associative, so the Associative rule can be applied yielding two
subsequent configurations:

xi1
x1
4“ i1^ i2;i3

x2
4“ i3 | H | x ÞÑ x1;x2y (4.2)

xi1;i2
x1
4“ i1^ i3

x2
4“ i3 | H | x ÞÑ x1;x2y (4.3)

The last rule in Figure 4.8, and a symmetrical one not shown for brevity, expands the
generalization of terms with associative symbols to handle identity. In conjunction with
the Associative rule, this leads, when generalizing from lists of expressions or sequences
of statements, to a pattern which can “ignore” a sublist or subsequence.

Looking again at the example above, generalizing from i1;i2;i3
x
4“ i1;i3 by only

using the associative rule eventually yields the patterns i1;e and e;i3, i.e., a sequence
either starting with i1 or ending with i3. A more specific pattern would be i1;e;i3,
i.e., a sequence of instructions starting with i1, ending with i3, and allowing any other
instructions in the middle.

To obtain the more specific pattern, we apply the Identity rule to the first constraint

of the second configuration above, i.e., to i1;i2
x1
4“ i1. This leads to the following two

configurations:

xi1;i2
x1
4“ e;i1^ . . . | H | x ÞÑ x1;x2y (4.4)

xi1;i2
x1
4“ i1;e^ . . . | H | x ÞÑ x1;x2y (4.5)

The second configuration, after a further Associative split, leads to i1;x12;i2, where

x12 is the generalization i2
x12
4“ e. To avoid non-termination, the Identity rule is applied

lazily.

68

(context, right)

C ^ fp. . . q
x
4“ gpt1, . . . , tk, . . . , tnq C ^ fp. . . q

xk
4“ tk

S Ñ S ^ ˝
ck
4“ gpt1, . . . , tk´1, ˝, tk`1, . . . , tnq

θ θ ^ x ÞÑ ckJxkK
k P t1, . . . , nu
ck, xk: fresh variables
n ą 0

(context, left)

C ^ fpt1, . . . , tk, . . . , tnq
x
4“ gp. . . q C ^ tk

xk
4“ gp. . . q

S Ñ S ^ fpt1, . . . , tk´1, ˝, tk`1, . . . , tnq
ck
4“ ˝

θ θ ^ x ÞÑ ckJxkK
k P t1, . . . , nu
ck, xk: fresh variables
n ą 0

(0-arity)

C ^ t
x
4“ t1 C

S Ñ S ^ t
x
4“ t1

θ θ
t and t1 are constants
or have arity zero

Figure 4.9: Generalization Inference Rules for Contexts. Explained in Section 4.6.

4.6 Inference Rules for Contexts

In this section we explain the inference rules for generalization via introduction of
contexts, shown in Figure 4.9.
The first two rules, which are symmetrical, are the central inference rules of our

system. They handle the case where the terms are generated by different symbols f
and g, and at least one of them has subterms.
The first rule generalizes the two patterns to a context ckJxkK, where xk is some

generalization of the f pattern. For this generalization to be valid, xk must also match
within some sub-term the g term. Hence, for each sub-term tk of the g term, the

rule creates a distinct configuration with a new generalization constraint fp. . . q
xk
4“ tk.

69

On the RHS, it introduces a context gpt1, . . . , tk´1, ˝, tk`1, . . . , tnq, which replaces the
subterm with a context hole (˝) while leaving the rest of the term intact. This encodes
the structure of the term that has been traversed to reach the subterm. The rule does
not process the LHS term at all, representing this no-op by an identity context, i.e., by
just ˝.
Consider the following configuration, obtained from example in Figure 4.1 when

generalizing, within the if on the right, from (ret = ...) !== undef on the left and the
assignment:

x(ret = ...) !== undef
x
4“ appUrl = ... | H | idy (4.6)

The inequality check on the left has subterms: (ret = ...) and undef. For each of
the subterms, the Context (left) rule creates a distinct new configuration for the case
where the new context has a hole for that subterm:

x(ret=...)
x1
4“ appUrl=... | ˝!== undef

c1
4“ ˝ | x ÞÑ c1Jx1Ky (4.7)

xundef
x2
4“ appUrl=... | (ret=...) !==˝

c2
4“ ˝ | x ÞÑ c2Jx2Ky (4.8)

The second configuration will eventually be pruned (see Section 4.8), as undef
x2
4“

appUrl =... leads to a less specific generalization than the first configuration.
Steps (c) to (g) in Figures 4.5 and 4.6 show the generalization from the entire

conditions of the two examples by repeatedly applying the context rules. Enough
contexts have been generated that the remaining generalization constraint is over the
two corresponding assignments. We will show a rule in Section 4.7 that can remove
some of the unnecessary contexts in the configuration.
The third rule in Figure 4.9 handles the case where the terms are either constants

or have no children. In this case, we simply generalize the terms to an unconstrained
variable x.

4.7 Rules for Renaming and Context Flattening

Figure 4.10 shows the rules for variable renaming and for flattening contexts that
represent identical patterns in our language.

The first rule identifies variables (both regular and context) matching identical content
by introducing a rename, i.e., a substitution from variable to variable, and removing
the redundant solved constraint. As explained in Section 4.9, this is crucial for inferring

70

(renaming)

C C

S ^ t
x1
4“ t1 ^ t

x2
4“ t1 Ñ S ^ t

x2
4“ t1

θ θ ^ x1 ÞÑ x2

(context of context)

C C

S ^ t1
c1
4“ t11 ^ t2

c2
4“ t12 Ñ S ^ t1rt2{˝s

c1
4“ t11rt12{˝s

θ ^ x1 ÞÑ c1Jx2K^ x2 ÞÑ c2Jx3K θ ^ x1 ÞÑ c1Jx3K
@s P θ . c2 P sñ
Dx2, x3. s “ x2 ÞÑ c2Jx3K^

@p P θ . p ‰ s^ x2 P pñ
Dx1.p “ x1 ÞÑ c1Jx2K

(context of variable)

C C

S ^ tc
c
4“ t1c ^ t2

x2
4“ t12 Ñ S ^ tcrt2{˝s

x1
4“ t1crt12{˝s

θ ^ x1 ÞÑ cJx2K θ
c R θ x2 R θ

Figure 4.10: Rules for Renaming and Context Flattening. Explained in Section 4.7.

rewrite rules. Steps (m,n) in Figure 4.6 show how the Renaming rule identifies variables
on the two sides of the rewrite symbol.

The second rule collapses contexts to create a smaller (and thus both faster and easier
to read) rewrite rule. In general, contexts can be nested, with different context nesting
orders representing different term sets. Still, as our language is restricted to anywhere
contexts, we can collapse nested contexts to obtain equivalent smaller patterns when
the eliminated context does not appear elsewhere in the pattern. Step (o) in Figure 4.7
shows one such flattening. Intuitively, context cd1 and variable xd1 are not used in a
different structure (i.e., not nested as cc1Jcd1Jxd1KK) anywhere else in the pattern so they
can be safely eliminated.
Similarly, the third rule removes the context wrapping a variable when neither the

context nor the variable appear anywhere else in term, in a different structure.

71

4.8 Extracting Solutions

The solutions, i.e. generalizing patterns, are obtained by applying the substitution
recursively on the variable generalizing the original terms. For example, Applying
substitution x ÞÑ fpyq, y ÞÑ cJzK on the starting variable x becomes fpcJzKq. As the
rules do not introduce cycles (we do not consider the initial identity substitution as
introducing cycles), the recursion step is guaranteed to terminate. Figure 4.7 shows
part of one final configuration when generalizing from the transformation examples in
Figure 4.1. Applying the substitution on variable x will yield the rule in Figure 4.3.

Most specific generalizer pruning The context inference rules allow inference of
solutions which are more general than others in the same solution set. We account for
this by pruning all such solutions at the end of the algorithm. For example, looking
at step (c) in Figure 4.5, the application of the Context (left) rule also yields another
subsequent configuration which generalizes from hooks expression on one side, and the
assignment on the other side. This inference path will eventually lead to a configuration
that is more general than the one shown in the figure, so the more general configuration
will be pruned at the very end of the algorithm. This pruning step ensures the final
solution is the set of MSGs of the input patterns.

4.9 Generalizing Rewrite Rules

Generalizing rewrite rules follows naturally from generalizing patterns. Rewrite rule
l ñ r is more general than rewrite rule l1 ñ r1 if l ñ r applies to any term that l1 ñ r1

applies to (i.e., l is more general than l1) and, in all such instances, the resulting terms
are identical.

We lift generalizing patterns to generalizing rewrite rules by considering each rewrite
rule as a pair, i.e., the rewrite arrow is seen as a free function symbol, and then applying
the standard pattern generalization algorithm. The first step in Figure 4.5 shows how
the rewrite arrow is considered a regular symbol and the Decomposition step is applied.

The set of solutions will contain rewrite rules that have the same set of variables on
both sides of the rewrite, as well as rewrite rules that have extra variables on the LHS
or RHS. A rewrite rule that contains a variable on the LHS which does not appear on
the RHS can be interpreted as deleting, instead of moving, that part of the term. A

72

new variable on the RHS can be interpreted as introducing a new term which varies
between applications of the rewrite rule. Such a term can either be left as a variable,
i.e., be considered symbolic, or it can be synthesized considering other constraints. In
our case, we only allow such solutions when the new variable on the RHS has been
generalized from JavaScript identifiers. In these cases, we synthesize a new identifier
with a fresh, unique name.

The above is useful for the rules in our benchmark suite which introduce a new
variable. One such example is the x variable in our motivating example transformation
(Fig 4.3). After the rule is applied, the metavariable x is replaced with a JavaScript
variable (syntactically, an identifier) that has a fresh, unique name.

Identifying variables on both the LHS and RHS of the rewrite is done via the
Renaming inference rule in Figure 4.10. For the example in Figure 4.1, the analysis
phase identified a (context) generalization for the functions before the rewrite and a
different (context) generalization for the functions after the rewrite. The Renaming
inference rule recognizes that they generalize identical pairs of patterns, and introduces
a rename to the substitution to encode the identity for the final solution.

4.10 Inferring Program Transformations

In this section we explain how we extend the inference algorithm presented above to
infer program transformations from multiple examples of concrete code transformations.
Given a set of patterns (that may be either ground terms or may contain variables

as well), we find the set of their MSGs, i.e., most specific generalizations (defined in
Section 4.4), by applying the following algorithm:

function generalize(inputPatternSet)
oneInputPattern Ð head of inputPatternSet
generalizations Ð {oneInputPattern}
for each p in tail of inputPatternSet do

newGens Ð H
for each g in generalizations do

newGens Ð newGens Y genPair xg, py
generalizations Ð newGens

return generalizations

73

The algorithm takes as input a set of patterns (in our case, the program transforma-
tions), and outputs another set of patterns which are the MSGs of the patterns in the
input set. The generalization of a set of one pattern is a set of the pattern itself. Going
forward, the result of generalizing between a set of patterns and an additional pattern
is the set union of generalizing from each element in the set with the additional pattern.
Generalizing from a pair of patterns is denoted as genPair above, and it is explained in
Section 4.4.

The final result is obtained by adding each input pattern to the generalization set in
this manner. As the patterns obtained at each step are the most specific (as explained
in Section 4.4), the order in which input patterns (i.e., input transformation examples)
are considered does not matter.

Correctness of Inferred Rewrite Rules. Expressing program transformations as
rewriting rules enables verifying properties of the transformations. For example, many
of the transformations in our benchmark suite are refactorings, and it could be useful
to verify that they preserve semantics. However, as the inferred rewrite rule only covers
the syntactic part of the transformation, additional side conditions would be needed
to ensure that behavior has not changed. Adding such side conditions and performing
verification is beyond the scope of this dissertation. Note that in practice, many desired
code transformations are not semantics preserving, and our system works equally well
in such scenarios.

4.11 Optimizations

We applied several optimizations to allow our algorithm to scale to the input code
used in our evaluation. With the exception of the heuristic pruning, presented at the
end of this section, all other optimizations do not affect the correctness of the algorithm.

Top-down decomposition

For clarity, the rules are presented as inference rules over configurations. In the
implementation we avoid maintaining a set of unsolved constraints. The algorithm
recursively decompose the initial constraint top-down gathering the set of solutions on
returning from the recursion. So the unsolved constraints are implicit in the recursion

74

step being computed, leaving the working configurations as pairs of the solved constraints
and the solution environment.

Caching

The main benefit of the top-town decomposition optimization above is enabling the
caching of constraint solutions. The solution for a constraint obtained by only applying
the inference rules from Figures 4.8 and 4.9 is independent of its outer constraint. The
solution for the i < 10

x
4
“ i < arch.length constraint is independent of the other for loop

constraint, i.e., if the constraint would appear again elsewhere in the term, the solution
would be the same. This is not true after also applying the “context of context” and
“context of variable” rules as they have side-conditions which may depend on the outer
constraint. For example, the “context of context” rule checks whether the eliminated
context appears anywhere else in the overall solution, so, while the check may be true
locally, it could be invalidated by extra bindings in the outer constraint. In order to
allow caching, the algorithm only applies the rules from Figure 4.10 at the very end,
after all analysis rules have been executed.

Avoiding unfeasible generalization paths

We restrict context rules to only recursively descend on a pair of terms when there
is an intersection between either the symbols or the constants that appear in the two
terms.

Heuristic pruning of generalization solutions

To improve scalability, we inhibit searching for context generalization in terms
appearing on both sides of the rewrite. For example, looking at Figure 4.1, the
algorithm will not search for a context generalization between “else” branches because,
for each rule, the else branch is identical before and after the transformation. Without
this restriction, the algorithm would have found the generalization cJx + yK, as the +

operator appears in the “else” branch on both sides.
This heuristic is the only optimization that affects the a formal property of our

algorithm, i.e., it may lead to over-generalizations. In practical terms, when generalizing
from a set of example transformations, the optimization may lead our algorithm to
converge faster on the desired transformation pattern by ignoring the details in code

75

which is preserved by the transformations. We could not check the difference in number
of steps required for converging with and without the optimization because deactivating
the optimization hampers scalability to the point where most transformation patterns
cannot be inferred. Finally, in our evaluation, we did not find any transformation type
for which the details would have been relevant.

4.12 Correctness of Generalization Algorithm

We discuss the correctness properties of our inference rules. Recall that an inference
rule operates over configurations of the form xC | S | θy. For a configuration c, let cpxq
be the term obtained by applying the substitution θ from c recursively on the variable
x.

The following theorem formally states that our rules are sound, in the sense that any
configuration derived by the rules is a generalizer.

Theorem 4.1 Let c0 ” xt1
x
4“ t2 | H | idy be an initial configuration. Then for any

configuration c obtained by applying the rules in Figure 4.8 and Figure 4.9 starting with
c0, cpxq is a generalizer of t1 and t2.

To prove the theorem, let c be a configuration such that cpxq is a generalizer of t1 and t2,
and let c1 be a configuration obtained by applying a rule from Figure 4.8 or Figure 4.9
on c. Then, we can show that c1pxq is also a generalizer of t1 and t2, by analyzing each
inference rule. For example, Decompose replaces a variable with the term fpx1, . . . , xnq
if the variable generalizes terms of the form fp. . .q in both the left and the right, and
thus the result is still a generalizer of t1 and t2 (a MSG).
The next theorem states that our rules are complete, in the sense that any most

specific generalizer (MSG) can be derived using the rules.

Theorem 4.2 Let c0 ” xt1
x
4“ t2 | H | idy be an initial configuration. Then any

configuration c such that cpxq is the MSG of t1 and t2 can be obtained by applying the
rules in Figure 4.8, Figure 4.9, and Figure 4.10 starting with c0.

In the following, let c be a configuration such that cpxq is a generalizer of t1 and t2.
The proof relies on two main steps:

1. Let g be a generalizer of t1 and t2, such that g is strictly more specific than cpxq.
Then there exists some configuration c1 obtained by applying a rule from from
Figure 4.8 or Figure 4.9 on c such that g is more specific than c1pxq.

76

2. If cpxq is not an MSG of t1 and t2, then at least one of the rules in Figure 4.8,
Figure 4.9, or Figure 4.10 can apply.

To see why the completeness holds, let g be some MSG of t1 and t2. We construct a
sequence of configurations c0, . . . , ci, . . . , g starting at c0 such that each configuration
ci is obtain from ci´1 by applying an inference rule and g is more specific than cipxq.
Notice that for the initial configuration c0, we have that c0pxq is x (the most general
generalizer of t1 and t2). Thus, g is more specific than c0pxq. For any ci in the sequence,
step (2) ensures that, if cipxq does not equal g modulo the rules in Figure 4.10, then we
can extend the sequence by applying an inference rule. Further, step (1) ensures that
we can extend the sequence with a configuration ci`1 such that g is more specific than
ci`1pxq. Finally, it can be shown that there are no infinite such sequences, thus we can
conclude that we can always construct such a sequence for any MSG g.
It follows as a consequence of the two theorems above that all the MSGs are found

by using the rules. Indeed, the set of configurations generated by the rules consists only
of generalizers (by Theorem 4.1) and contains all MSGs (by Theorem 4.2). Thus, the
MSGs are all the elements in the set that are not more specific than any other elements
in the set.

4.13 Evaluation

Learning program transformations from examples can be useful in many scenarios,
from interactive tools where the developer shows the tool example transformations one
by one until satisfied with the inferred transformation, to fully-automatic systems that
learn from large code bases.
We evaluate our approach by using our system to learn linting tool error fixes from

examples. A linting tool shows the developer warnings about common stylistic and
semantic problems in her code. The developer then has to figure out ways to change
to code in order avoid the problem. The fixes are not always obvious, and they are
often repetitive, thus tedious to implement. Learning the transformations alleviates
this problem by allowing the developer to show the tool a few example fixes, with the
tool generalizing from them and suggesting a rule capable of automatically fixing other
similar problems in the code base.
The usefulness of an automation tool is defined by the ratio between the amount

of effort required without the tool and the amount of effort required to use the tool,

77

including learning. In our case, the experience of using the tool is similar to the first
few steps of the manual approach: the developer implements the first few code changes
by hand. The only extra cost is that of activating the tool, i.e., telling the tool to look
at the examples. While not implemented in our prototype, similar approaches by other
tools have deemed this cost acceptable. Once the tool has learned a rule, it proposes
to the developer fixes for similar problems in other parts of the codebase, which the
developer can accept or reject on a case by case basis. The tool is useful if it can learn
from few examples program transformations that are applicable in many other cases.

4.13.1 Methodology

We use our system to automatically learn fixes for a set of 15 linting tool warning
types reported by ESLint [23], a widely-used linting tool for JavaScript. To select
the warning types, we run ESLint on the top 20 most popular open-source JavaScript
projects on GitHub, the popular Git host. For three of the projects ESLint did not
report any warnings because they contained very little JavaScript code. The remaining
17 projects, shown in Figure 4.12, are used for evaluation.

We order the warning types by the number of times they are reported across all
projects, and choose the 10 that are encountered most frequently and have a straight-
forward fix — e.g., it is not straightforward to decide on a fix for a high cyclomatic
complexity warning.
5 of the 10 warnings involved syntactically distinct transformations that have been

bundled together by ESList because they are similar semantically, e.g., checking for an
assignment in a for loop condition is different from checking for an assignment in a
do-while loop condition, and its fix would be different. We modify ESList to report
such cases distinctly, creating 5 new warning types. All in all, our benchmark consists
of 15 warning types, shown in Table 4.11. See the ESLint documentation [23] for a
detailed description of the problems fixed by the rules.
For each of the 15 linting tool warning types, we repeat the following steps:

1. Run the ESList tool and gather all warning reports for this warning type. A
warning report contains the source location in the project.

2. Randomly select at most 10 reports from each open-source project, then randomly
select 10 reports from the resulting pool. We filter out code snippets larger than
200 characters, which is usually a few lines of code. For the no-loop-func example,

78

eqeqeq !==
x != y
ó

x !== y

eqeqeq ===
x == y
ó

x === y

guard-for-in
for (e in l) { b }

ó
for (e in l) { if ({}.has(l, e)) { b } }

no-cond-assign if
if (cJa = bK) t else e

ó
a = b; if (cJaK) t else e

no-cond-assign while
while (cJa = eK) { b }

ó
a = e; while (cJaK) { b; a = e }

no-loop-func
for(i; c; s) { cJ function(a) { b } K }

ó
n = function(a) { b }; for(i; c; s) { cJnK }

no-neg-cond ternary
!x ? y : z

ó
x ? z : y

no-neg-cond if
if (!x) y else z

ó
if (x) z else y

no-nested-ternary left
cJ u ? x ? y : z : v K

ó
n = x ? y : z; cJ u ? n : v K

no-nested-ternary right
cJ u ? v : x ? y : z K

ó
n = x ? y : z; cJ u ? v : n K

no-return-assign
return x = y

ó
x = y; return x

no-throw-literal
throw x
ó

throw new Error(x)

no-void
void 0
ó

undef

no-unneeded-ternary false
x ? false : true

ó
!x

no-unneeded-ternary true
x ? true : false

ó
x

Figure 4.11: Benchmarks

79

project name URL (https://github.com/)

Semantic-UI Semantic-Org/Semantic-UI
angular.js angular/angular.js
brackets adobe/brackets
backbone jashkenas/backbone
d3 mbostock/d3
express expressjs/express
foundation-sites zurb/foundation-sites
impress.js impress/impress.js
ionic driftyco/ionic
jQuery-File-Upload blueimp/jQuery-File-Upload
jquery jquery/jquery
meteor meteor/meteor
moment moment/moment
react facebook/react
resume.github.com resume/resume.github.com
reveal.js hakimel/reveal.js
three.js mrdoob/three.js

Figure 4.12: Benchmark Projects

we have only found 15 instances of any size across all projects, so we select the 10
smallest of them, most of which are around 800 characters, which is about one
page of code.

3. Write by hand the rewrite rule that encodes the fix. This is the rule the tool is
expected to infer back from examples.

4. Execute the rewrite rule on the code of 10 warning reports obtaining 10 fix
example instances.

5. Generate 10 random permutations of the example instances and, for each of
them, execute the algorithm presented in Section 4.10. The algorithm takes as
input a set of example instances and, at each step, the outer loop processes an
additional example instance. The random permutation determines the order in
which the initial head call and the outer loop obtain example instances from the
set. Additionally, during evaluation, at each step we measure the time it takes to
generalize and check whether the expected rule has been reached.

80

co
de

si
ze

(A
ST

no
de
s)

ex
ec
ut
io
n
ti
m
e
(m

s)
#

ex
am

pl
es

to
ex
pe

ct
ed

ru
le

ru
le

id
en
ti
fie
r

m
ea
n˘

S.
D
.

m
ed
ia
n

m
ax

m
ea
n˘

S.
D
.

m
ed
ia
n

m
ax

m
ea
n˘

S.
D
.

m
ed
ia
n

m
ax

eq
eq
eq

!=
=

17
˘6

22
31

1˘
0

0
1

2˘
0

2
3

eq
eq
eq

=
=
=

18
˘3

20
25

2˘
1

2
5

3˘
1

4
5

gu
ar
d-
fo
r-
in

68
˘4

0
66

18
0

23
66
˘8

74
78

48
09

6˘
1

7
10

no
-c
on

d-
as
si
gn

if
86
˘2

1
96

14
2

59
˘5

1
36

16
4

5˘
2

4
10

no
-c
on

d-
as
si
gn

w
hi
le

85
˘4

1
10

5
17

0
38

40
˘9

44
8

12
70

6
3˘

1
3

6
no

-n
eg
at
ed
-c
on

d
te
rn
ar
y

49
˘2

7
83

10
2

1˘
1

2
4

2˘
0

2
4

no
-n
eg
at
ed
-c
on

d
if

82
˘3

4
79

15
4

63
˘3

7
30

13
2

8˘
1

8
10

no
-n
es
te
d-
te
rn
ar
y
ri
gh

t
76
˘2

7
66

13
7

12
˘6

5
26

2˘
1

2
5

no
-n
es
te
d-
te
rn
ar
y
le
ft

65
˘2

2
88

10
1

26
˘1

4
17

59
7˘

2
8

10
no

-r
et
ur
n-
as
si
gn

45
˘4

0
29

16
5

1˘
1

1
5

2˘
0

2
3

no
-t
hr
ow

-li
te
ra
l

21
˘1

7
25

57
2˘

1
1

4
3˘

1
5

7
no

-u
nn

ee
de
d-
te
rn
ar
y
fa
ls
e

28
˘5

30
39

0˘
0

1
1

2˘
0

2
2

no
-u
nn

ee
de
d-
te
rn
ar
y
tr
ue

19
˘6

20
36

8˘
19

2
62

2˘
0

3
3

no
-v
oi
d

9˘
1

11
11

0˘
0

0
0

2˘
0

2
2

no
-fu

nc
-in

-lo
op

30
7˘

13
1

28
6

50
8

-
-

-
-

-
-

Ta
bl
e
4.
1:

B
en
ch
m
ar
k
R
es
ul
ts

81

4.13.2 Results

Figure 4.11 gives the desired rewrite rule for each of the ESLint benchmark rules.
Note that of the 15 desired rules, five require use of our anywhere contexts. This gives
strong evidence that rules with contexts are useful in practice; to our best understanding,
no previous technique for learning transformations from examples can even express
these rules, let alone learn them.

Table 4.1 shows the results of our experiment. For each transformation, it shows the
mean, standard deviation, median, and maximum for:

• The example instances AST sizes (i.e., number of nodes in the AST).

• The execution time it took a permutation to get to the expected rule. For each
permutation, the execution time is the sum of the generalization times up to the
point where it converged to the expected rewrite rule.

• The number of examples required to converge on the expected rule.

In most cases, the execution time for generalizing from examples to the desired rule
is negligible, with a maximum median execution time of 78ms. The optimizations
described in Section 4.11 are key to obtaining these performance results. Deactivating
any one of them makes the vast majority of the examples time out.

For the no-loop-func rule, the only available examples were significantly larger than
those for the other rules, as explained earlier. Our implementation does not yet scale
to these examples; it exceeded a 9-minute timeout in two-thirds of cases, and the cases
that could be handled were not sufficient to learn the desired rule (though the rule
that was learned was possibly useful). We plan to further improve scalability in the
future; in particular, the top-down decomposition optimization (Section 4.11) makes the
algorithm highly parallelizable, and it could even be executed in a distributed manner.
In most cases, the number of examples required to converge to the desired rewrite

rule is quite low (four or fewer for two thirds of the rules). For the three rules, a median
of 7-8 examples were required. In these cases, we found that a quirk of our AST format,
ESTree [65], led to identical pieces of code being represented by different AST nodes,
complicating generalization. We plan to address this issue in future work by reasoning
about equivalence classes of AST nodes. Also, we plan to explore further heuristic
generalization, which we expect will yield a significant reduction in the number of
examples required.

82

4.14 Related Work

At a high level, our generalization approach is similar to, and can be seen as an
extension of, the work of Alpuente et al. [8]. They present a syntactic order-sorted gen-
eralization algorithm for terms with function symbols which can obey any combination
of associativity, commutativity, and identity axioms. Our system does not implement
commutativity and order-sorting because both aspects would not be particularly helpful
in the practical cases we considered, would have complicated both the system and
its presentation, and could hurt generalization performance. Still, order-sorting and
commutativity are orthogonal to the other generalization rules (i.e. rules specifying
the way two terms are generalized, differentiating them from rewriting rule), and the
system implementation could be extended to include them. Our extension of Alpuente
et al.’s work is the inference of contexts, with rules specializing for context variables [9]
and anywhere contexts; this capability is crucial for our application domain.
Raychev et al. [66] present a search-based technique for computing a sequence of

refactorings consistent with some initial edits performed by the developer. At a high
level this work is similar to ours; their technique infers a program transformation from
a (partial) example. However, their transformations are limited to compositions of
certain core refactorings; our system can learn much more general transformations.
Negara et al. [2, 3] propose a technique for learning refactorings from sequences of

very fine-grained code changes, e.g., insert a numeric literal. Their algorithm is based
solely on labeled sequences of changes and disregards completely where in the code the
change is applied. While this may infer some useful refactorings like “convert element
to collection”, the applicability is limited.

Closer to our approach, Andersen and Lawall [16] propose an approach for inferring
code patches from examples. Their system learns program transformations expressed
as a composition of rewrite rules in a restricted language (no contexts or associative
matching). They show an example that their approach cannot handle, but which can
be expressed in our language, and can be learned by our system. Furthermore, their
approach could not handle other cases covered by our system, such as our motivating
example.

In a follow-up of the above work, Andersen et al. [17] address some of the limitations,
but the short paper does not go into detail about how the algorithm works and its
effectiveness is not clear from the limited evaluation.

83

Kim et al. [62] propose inferring refactorings as a composition from a set of predefined
transformations. The search for the right transformation is a greedy heuristic. The
approach is limited by the set of predefined transformations, so it cannot scale to new
contexts without significant effort.
Meng et al. [21] propose a system for inferring program transformations from one

example. The pattern matching condition is not expressed in a clearly-defined lan-
guage, but has an internal representation in the refactoring tool which includes tracking
data dependencies. The transformation itself is represented as a sequence of insert/re-
move/update AST operations.
Meng et al. [1] extend the above approach to learn from more than one example by

computing the diffs for each of the example input-output pairs and taking the common
subsequence of the fine-grained AST operations. The drawback is that the algorithm
becomes dependent on the order and type of the operation sequence, as explained in
Section 4.1.3.
Following on the above line of work, Meng et al. [22] apply the above technique to

clone detection and removal via an automatically-generated extract method refactoring.

84

Chapter 5

Conclusion and Future Directions

Currently, the main obstacle to automatic programming is the development effort
required to create even simple automatic program transformations. We give two
techniques that help overcome this obstacle by:

(i) discovering complex transformations via searching through possible compositions
of rewrite rules, and by

(ii) learning new rewrite rules from concrete code transformation examples.

The techniques introduced by this dissertation are just a step toward automatic
programming, and they are only a partial implementation of our proposed approach.
There are several directions of research that will bring us even closer to the goal.

The evolutionary approach might provide similar benefits for other optimization
problems. In particular, we believe it would provide significant benefits if applied to lower
level intermediate representations, e.g., LLVM. Optimizations over low-level intermediate
representations have traditionally been crippled by tight constraints on compilation
time. With today’s cloud computational resources, removing this limitation is feasible.
This will allow running algorithms such as ours that explore many optimization paths,
which could provide significant performance gains. Another promising application would
be improving code maintenance, e.g., by improving code readability.

Applying the evolutionary approach to other problems would also encourage research
into a topic this work only touches upon: quickly and efficiently determining how
close a program is to an optimization goal. Our approach is a straightforward static,
syntax-driven evaluation of the program’s AST. This could be significantly improved
by actually executing the program as part of the optimization loop, or by employing
more advanced static techniques, such as symbolic execution.
Our anti-unification algorithm only infers patterns with anywhere contexts and no

side-conditions. Our current algorithm constructs complex contexts in the inference
process, but discards them along the way in order to keep the patterns compact and in

85

order to scale to large code inputs. Removing this limitation could be challenging, but
it would also allow the technique to be applied to larger classes of transformations.
Allowing the algorithm to also infer side-conditions, in particular side-conditions

containing negation, would also be helpful. One approach to inferring negation side-
conditions is to anti-unify a negative input pattern (i.e., a pattern that should not be
matched by the desired pattern) with a positive pattern (i.e., a pattern that should
be matched by the desired pattern). This will yield a pattern that is more general
than both the positive pattern and the negative patterns. The desired pattern could be
obtained by replacing each variable in the anti-unification pattern with a conjunction
of the sub-pattern matched by the variable in the positive pattern and the negation of
the sub-pattern matched by the variable in the negative pattern.

The main challenge we encountered to applying anti-unification to program transfor-
mation was scaling the algorithm to larger programs. Improving performance, especially
considering the above generalizations, is a prerequisite to the mainstream success of
this approach.
From a theoretical perspective, we have not formally defined the languages used by

the two techniques in terms of Matching Logic. Clarifying this connection is required
for verifying and certifying the correctness of the proposed transformations.

86

References

[1] N. Meng, M. Kim, and K. S. McKinley, “LASE: Locating and applying systematic
edits by learning from examples,” in Proceedings of the 2013 International Confer-
ence on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 502–511.

[2] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig, “Is It Dangerous to
Use Version Control Histories to Study Source Code Evolution?” in Proceedings of
the 26th European Conference on Object-Oriented Programming, ser. ECOOP’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 79–103.

[3] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, “Mining Fine-grained Code
Changes to Detect Unknown Change Patterns,” in Proceedings of the 36th Interna-
tional Conference on Software Engineering, ser. ICSE 2014. New York, NY, USA:
ACM, 2014, pp. 803–813.

[4] F. Baader and T. Nipkow, Term Rewriting and All That. New York, NY, USA:
Cambridge University Press, 1998.

[5] T. Back, Evolutionary algorithms in theory and practice. Oxford Univ. Press,
1996.

[6] G. Rosu, “Matching logic - extended abstract (invited talk),” in 26th International
Conference on Rewriting Techniques and Applications, RTA 2015, June 29 to
July 1, 2015, Warsaw, Poland, ser. LIPIcs, M. Fernández, Ed., vol. 36. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 5–21.

[7] G. Roşu, “Matching logic,” Logical Methods in Computer Science (LMCS), vol. 13,
no. 4, 2017.

[8] M. Alpuente, S. Escobar, J. Espert, and J. Meseguer, “A modular order-sorted
equational generalization algorithm,” Information and Computation, vol. 235, pp.
98–136, 2014.

[9] M. Felleisen and R. Hieb, “The revised report on the syntactic theories of sequential
control and state,” Theor. Comput. Sci., vol. 103, no. 2, pp. 235–271, 1992.

[10] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, “Evalu-
ating MapReduce for multi-core and multiprocessor systems,” in Proceedings of
the 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, ser. HPCA ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 13–24.

87

[11] J. R. Koza, Genetic programming: on the programming of computers by means of
natural selection. MIT press, 1992, vol. 1.

[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets,” in Proceedings of the 2Nd USENIX Confer-
ence on Hot Topics in Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10.

[13] “Apache Spark,” https://spark.apache.org, accessed on 03/20/2014.

[14] “T. J. Watson Libraries for Analysis,” http://wala.sf.net, accessed on 2013-05-20.

[15] A. M. Sloane, “Lightweight language processing in Kiama,” in Generative and
Transformational Techniques in Software Engineering III, ser. GTTSE III. Springer,
2011, pp. 408–425.

[16] J. Andersen and J. Lawall, “Generic patch inference,” in Automated Software
Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Conference on, Sept
2008, pp. 337–346.

[17] J. Andersen, A. C. Nguyen, D. Lo, J. L. Lawall, and S.-C. Khoo, “Semantic patch
inference,” in Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2012. New York, NY, USA: ACM,
2012, pp. 382–385.

[18] M. Felleisen, R. B. Findler, and M. Flatt, Semantics engineering with PLT Redex.
Mit Press, 2009.

[19] G. Rosu and T. F. Serbanuta, “An overview of the K semantic framework,” The
Journal of Logic and Algebraic Programming, vol. 79, no. 6, pp. 397–434, 2010.

[20] L. C. Kats and E. Visser, The spoofax language workbench: rules for declarative
specification of languages and IDEs. ACM, 2010, vol. 45, no. 10.

[21] N. Meng, M. Kim, and K. S. McKinley, “Systematic editing: Generating program
transformations from an example,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI ’11.
New York, NY, USA: ACM, 2011, pp. 329–342.

[22] N. Meng, L. Hua, M. Kim, and K. S. McKinley, “Does automated refactoring
obviate systematic editing?” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE
Press, pp. 392–402.

[23] “ESLint,” http://eslint.org, accessed on 15/05/2018.

88

[24] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM,
vol. 12, no. 10, pp. 576–580, Oct. 1969.

[25] D. Harel, Dynamic Logic. Dordrecht: Springer Netherlands, 1984, pp. 497–604.

[26] “K Framework,” http://kframework.org, accessed on 1/10/2015.

[27] C. Radoi, S. J. Fink, R. Rabbah, and M. Sridharan, “Translating imperative code
to mapreduce,” in Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, ser. OOPSLA ’14.
New York, NY, USA: ACM, 2014, pp. 909–927.

[28] “Git distributed version control system,” http://git-scm.com, accessed on
1/10/2015.

[29] “Mercurial distributed source control management tool,” http://mercurial.selenic.
com, accessed on 1/10/2015.

[30] R. Joshi, G. Nelson, and K. Randall, “Denali: A goal-directed superoptimizer,” in
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, ser. PLDI ’02. New York, NY, USA: ACM, 2002, pp.
304–314.

[31] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” in Pro-
ceedings of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’13. New York,
NY, USA: ACM, 2013, pp. 305–316.

[32] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
in Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX
Association, 2004.

[33] “Apache Hadoop,” http://hadoop.apache.org, accessed on 03/05/2014.

[34] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. Johnson, “Relooper: Refactoring for
loop parallelism in java,” in Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’09. New York, NY, USA: ACM, 2009, pp. 793–794.

[35] K. Knobe and V. Sarkar, “Array SSA form and its use in parallelization,” in
Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, ser. POPL ’98. New York, NY, USA: ACM, 1998, pp.
107–120.

[36] A. W. Appel, “SSA is functional programming,” SIGPLAN Not., vol. 33, no. 4, pp.
17–20, Apr. 1998.

89

[37] R. A. Kelsey, “A correspondence between continuation passing style and static
single assignment form,” in Papers from the 1995 ACM SIGPLAN workshop on
Intermediate representations, ser. IR ’95. New York, NY, USA: ACM, 1995, pp.
13–22.

[38] S.-w. Liao, “Parallelizing user-defined and implicit reductions globally on multi-
processors,” in Proceedings of the 11th Asia-Pacific Conference on Advances in
Computer Systems Architecture, ser. ACSAC’06. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 189–202.

[39] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang, “Communication optimizations for
irregular scientific computations on distributed memory architectures,” Journal of
Parallel and Distributed Computing, vol. 22, no. 3, pp. 462–478, Sep. 1994.

[40] Y. Klonatos, A. Nötzli, A. Spielmann, C. Koch, and V. Kuncak, “Automatic
synthesis of out-of-core algorithms,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’13. New York,
NY, USA: ACM, 2013, pp. 133–144.

[41] S. d. Swierstra and O. Chitil, “Linear, bounded, functional pretty-printing,” J.
Funct. Program., vol. 19, no. 1, pp. 1–16, Jan. 2009.

[42] N. Ramsey, “Unparsing expressions with prefix and postfix operators,” Software:
Practice and Experience, vol. 28, no. 12, pp. 1327–1356, 1998.

[43] B. C. Oliveira, A. Moors, and M. Odersky, “Type classes as objects and implicits,” in
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’10. New York, NY, USA:
ACM, 2010, pp. 341–360.

[44] “Scala Parallel Collections,” http://docs.scala-lang.org/overviews/
parallel-collections/overview.html, accessed on 03/20/2014.

[45] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler, “Apache Hadoop YARN: Yet another resource
negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Computing, ser.
SOCC ’13. New York, NY, USA: ACM, 2013, pp. 5:1–5:16.

[46] “Breeze,” http://www.scalanlp.org, accessed on 03/20/2014.

[47] M. M. Strout, L. Carter, and J. Ferrante, “Compile-time composition of run-
time data and iteration reorderings,” in Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, ser. PLDI ’03.
New York, NY, USA: ACM, 2003, pp. 91–102.

90

[48] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet, J. Ramanujam, A. Rountev, and
P. Sadayappan, “Code generation for parallel execution of a class of irregular loops
on distributed memory systems,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser. SC ’12.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 72:1–72:11.

[49] C. Nugteren and H. Corporaal, “Introducing Bones: a parallelizing source-to-
source compiler based on algorithmic skeletons,” in Proceedings of the 5th Annual
Workshop on General Purpose Processing with Graphics Processing Units, ser.
GPGPU-5. New York, NY, USA: ACM, 2012, pp. 1–10.

[50] M. H. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam, “De-
tecting coarse-grain parallelism using an interprocedural parallelizing compiler,” in
Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, ser. Super-
computing ’95. New York, NY, USA: ACM, 1995.

[51] R. Lämmel, “Google’s MapReduce programming model — revisited,” Science of
Computer Programming, vol. 70, no. 1, pp. 1 – 30, 2008.

[52] R. S. Bird, “Algebraic identities for program calculation,” Comput. J., vol. 32,
no. 2, pp. 122–126, Apr. 1989.

[53] E. Meijer, M. Fokkinga, and R. Paterson, “Functional programming with bananas,
lenses, envelopes and barbed wire,” in Proceedings of the 5th ACM Conference on
Functional Programming Languages and Computer Architecture, ser. FPCA ’91.
New York, NY, USA: Springer-Verlag New York, Inc., 1991, pp. 124–144.

[54] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. Johnson, “Relooper: Refactoring for
loop parallelism in java,” in Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’09. New York, NY, USA: ACM, 2009, pp. 793–794.

[55] L. Franklin, A. Gyori, J. Lahoda, and D. Dig, “Lambdaficator: From imperative
to functional programming through automated refactoring,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 1287–1290.

[56] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-free programs,”
in Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp.
62–73.

[57] E. Visser, “A survey of rewriting strategies in program transformation systems,”
Electronic Notes in Theoretical Computer Science, vol. 57, no. 0, pp. 109 – 143, 2001,
{WRS} 2001, 1st International Workshop on Reduction Strategies in Rewriting
and Programming.

91

[58] P. Borovanskỳ, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen, “An
overview of ELAN,” Electronic Notes in Theoretical Computer Science, vol. 15, pp.
55–70, 1998.

[59] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet, and
C. Talcott, All About Maude, A High-Performance Logical Framework, ser. LNCS.
Springer, 2007, vol. 4350.

[60] E. Visser, “Stratego: A language for program transformation based on rewrit-
ing strategies system description of stratego 0.5,” in Rewriting techniques and
applications. Springer, 2001, pp. 357–361.

[61] O. Bournez and C. Kirchner, “Probabilistic rewrite strategies. Applications to
ELAN,” in Rewriting techniques and applications. Springer, 2002, pp. 252–266.

[62] M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural changes
for matching across program versions,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 333–343.

[63] T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld, “Programming by demonstra-
tion using version space algebra,” Machine Learning, vol. 53, no. 1-2, pp. 111–156,
2003.

[64] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation using
examples,” Communications of the ACM, vol. 55, no. 8, pp. 97–105, 2012.

[65] “ESTree,” https://github.com/estree/estree, accessed on 15/05/2018.

[66] V. Raychev, M. Schäfer, M. Sridharan, and M. T. Vechev, “Refactoring with
synthesis,” in Proceedings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA
2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, 2013,
pp. 339–354.

92

WordCount

for (i n t i = 0 ; i < docs . l ength ; i++) {
St r ing [] s p l i t = docs [i] . s p l i t (" ") ;
for (i n t j = 0 ; j < s p l i t . l ength ; j++) {

St r ing word = s p l i t [j] ;
I n t eg e r prev = m. get (word) ;
if (prev == nu l l) prev = 0 ;
m. put (word , prev + 1) ;

}
}

ó Java to Lambda
Range (0 , docs . s i z e) . f o l d (m)({

case (v34 , i) =>

val s p l i t = docs (i) . s p l i t (" ") ;
val v10 = s p l i t . s i z e ;
Range (0 , v10) . f o l d (v34) ({

case (v33 , j) =>

val v13 = v33 (s p l i t (j)) ;
val prev = { if (v13 != nu l l) v13 else 0 } ;
v33 . updated (s p l i t (j) , prev + 1)

})
})

ó S:eliminate-null-check
Range (0 , docs . s i z e) . f o l d (m)({

case (v34 , i) =>

val v6 = docs (i) . s p l i t (" ") ;
val v4 = Range (0 , v6 . s i z e) . groupBy ({

case (j) => v6 (j)
}) ;

val v5 = v4 .map({
case (v2 , v3) =>

v3 . f o l d (v34 (v2)) ({
case (v1 , j) => v1 + 1

})
}) ;

v34 ++ v5
})

ó S:reduce-monoid-identity-op
Range (0 , docs . s i z e) . f o l d (m)({

case (v34 , i) =>

val v6 = docs (i) . s p l i t (" ") ;
val v4 = Range (0 , v6 . s i z e) . groupBy ({

93

case (j) => v6 (j)
}) ;

val v5 = v4 .map({
case (v2 , v3) =>

v34 (v2) + v3 . s i z e
}) ;

v34 ++ v5
})

ó E:localize-group-by-accesses
Range (0 , docs . s i z e) . f o l d (m)({

case (v34 , i) =>

val v4 = docs (i) . s p l i t (" ") . groupBy (ID) .__2;
val v5 = v4 .map({

case (v2 , v3) =>

v34 (v2) + v3 . s i z e
}) ;

v34 ++ v5
})

ó E:localize-map-accesses
Range (0 , docs . s i z e) . f o l d (m)({

case (v34 , i) =>

val v4 = docs (i) . s p l i t (" ") . groupBy (ID) .__2;
val v5 = v4 . z ip (v34) .map({

case (v2 , (v3 , v7)) =>

v7 + v3 . s i z e
}) ;

v34 ++ v5
})

ó E:localize-fold-accsses
docs . f o l d (m)({

case (v34 , (i , v8)) =>

val v4 = v8 . s p l i t (" ") . groupBy (ID) .__2;
val v5 = v4 . z ip (v34) .map({

case (v2 , (v3 , v7)) =>

v7 + v3 . s i z e
}) ;

v34 ++ v5
})

ó E:map-vertical-fission
docs . f o l d (m)({

case (v34 , (i , v8)) =>

val v4 = v8 . s p l i t (" ") . groupBy (ID) .__2;
val v5 = v4 .map({

case (v2 , v3) => v3 . s i z e
}) . z ip (v34) .map({

case (v2 , (v9 , v7)) => v7 + v9

94

}) ;
v34 ++ v5

})

ó E:identify-map-monoid-plus
docs . f o l d (m)({

case (v34 , (i , v8)) =>

(v8 . s p l i t (" ") . groupBy (ID) .__2) .map({
case (v2 , v3) => v3 . s i z e

}) |+| v34
})

ó E:pull-map-from-fold-by-subexpression-extract
docs .map({

case (i , v8) =>

(v8 . s p l i t (" ") . groupBy (ID) .__2) .map({
case (v2 , v3) => v3 . s i z e

})
}) . f o l d (m)({

case (v34 , (i , v10)) =>

v10 |+| v34
})

ó E:map-horizontal-fission
docs .map({

case (i , v8) =>

v8 . s p l i t (" ") . groupBy (ID) .__2
}) .map({

case (i , v11) =>

v11 .map({
case (v2 , v3) => v3 . s i z e

})
}) . f o l d (m)({

case (v34 , (i , v10)) =>

v10 |+| v34
})

ó E:swap-map-with-fold
val v11 = docs .map({

case (i , v8) =>

v8 . s p l i t (" ") . groupBy (ID) .__2
}) . f o l d ("ZERÓ TOKEN")({

case (v12 , (i , v13)) =>

v12 |+| v13
}) ;

v11 .map({
case (v2 , v3) => v3 . s i z e

})

ó E:map-horizontal-fission

95

val v11 = docs .map({
case (i , v8) =>

v8 . s p l i t (" ") . groupBy (ID)
}) .map({

case (i , v14) => v14 .__2
}) . f o l d ("ZERÓ TOKEN")({

case (v12 , (i , v13)) =>

v12 |+| v13
}) ;

v11 .map({
case (v2 , v3) =>

v3 . s i z e
})

ó E:map-horizontal-fission
val v11 = docs .map({

case (i , v8) =>

v8 . s p l i t (" ")
}) .map({

case (i , v15) =>

v15 . groupBy (ID)
}) .map({

case (i , v14) => v14 .__2
}) . f o l d (Map()) ({

case (v12 , (i , v13)) =>

v12 |+| v13
}) ;

v11 .map({
case (v2 , v3) =>

v3 . s i z e
})

ó E:swap-map-with-fold
val v14 = docs .map({

case (i , v8) =>

v8 . s p l i t (" ")
}) .map({

case (i , v15) =>

v15 . groupBy (ID)
}) . f o l d (Map()) ({

case (v16 , (i , v17)) =>

v16 |+| v17
}) ;

(v14 .__2) .map({
case (v2 , v3) =>

v3 . s i z e
})

ó E:swap-map-with-fold
val v15 = docs .map({

case (i , v8) =>

96

v8 . s p l i t (" ")
}) . f o l d (Map()) ({

case (v18 , (i , v19)) =>

v18 |+| v19
}) ;

val v14 = v15 . groupBy (ID) ;
(v14 .__2) .map({

case (v2 , v3) =>

v3 . s i z e
})

ó E:flatMap
val v15 = docs . f latMap ({

case (i , v8) =>

v8 . s p l i t (" ")
}) ;

val v14 = v15 . groupBy (ID) ;
(v14 .__2) .map({

case (v2 , v3) =>

v3 . s i z e
})

ó E:reducebykey
docs . f latMap ({

case (i , v8) =>

v8 . s p l i t (" ")
}) .map({

case (j , v6) =>

(v6 , 1)
}) . reduceByKey ({

case (v2 , v3) =>

v2 + v3
})

97

